Skip to content

flixpar/interpretable-misinformation-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Interpretable Misinformation Detection

Felix Parker, Kristen Nixon, Sonia Jindal

This project develops an interpretable system for detecting misinformation on Twitter. We train models that use the content of a tweet and its metadata to classify it as either misleading or not misleading, along with a corresponding confidence score, and provide various interpretations of the predictions. We construct a new dataset for this purpose from subset of the Twitter Community Notes dataset and additional news-related tweets.

Usage

To run our system first install the required packages in requirements.txt. Then run the scripts in this repository in the following order:

Data Processing:

  1. data/community-notes/community_notes.jl
  2. data/community-notes/fetch_tweets.py
  3. data/community-notes/format_tweets.py
  4. data/news-tweets/fetch_news_tweets.py
  5. data/news-tweets/format_tweets.py
  6. data/combined/combine_datasets.jl
  7. data/combined/generate_splits.py
  8. data/twitter-users/get_users.py
  9. data/twitter-users/format_users.py

Models:

  1. models/engagementscore/engagement-model.py
  2. models/userscore/user-model.py
  3. models/linkscore/fetch-linkscores.py
  4. models/linkscore/link-model.py
  5. models/textscore/textscore_train.py
  6. models/textscore/textscore_inference.py
  7. ?

User Study:

  1. userstudy/data/fetch_tweets.py
  2. userstudy/data/format_tweets.py
  3. userstudy/backend.py
  4. userstudy/analysis/database_to_csv.py