Skip to content

Latest commit

 

History

History
33 lines (28 loc) · 1.41 KB

File metadata and controls

33 lines (28 loc) · 1.41 KB

Interpretable Misinformation Detection

Felix Parker, Kristen Nixon, Sonia Jindal

This project develops an interpretable system for detecting misinformation on Twitter. We train models that use the content of a tweet and its metadata to classify it as either misleading or not misleading, along with a corresponding confidence score, and provide various interpretations of the predictions. We construct a new dataset for this purpose from subset of the Twitter Community Notes dataset and additional news-related tweets.

Usage

To run our system first install the required packages in requirements.txt. Then run the scripts in this repository in the following order:

Data Processing:

  1. data/community-notes/community_notes.jl
  2. data/community-notes/fetch_tweets.py
  3. data/community-notes/format_tweets.py
  4. data/news-tweets/fetch_news_tweets.py
  5. data/news-tweets/format_tweets.py
  6. data/combined/combine_datasets.jl
  7. data/combined/generate_splits.py
  8. data/twitter-users/get_users.py
  9. data/twitter-users/format_users.py

Models:

  1. models/engagementscore/engagement-model.py
  2. models/userscore/user-model.py
  3. models/linkscore/fetch-linkscores.py
  4. models/linkscore/link-model.py
  5. models/textscore/textscore_train.py
  6. models/textscore/textscore_inference.py
  7. ?

User Study:

  1. userstudy/data/fetch_tweets.py
  2. userstudy/data/format_tweets.py
  3. userstudy/backend.py
  4. userstudy/analysis/database_to_csv.py