Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bigint: Rename PartialModulus to Modulus, Modulus to OwnedModulusWithOne. #1796

Merged
merged 2 commits into from
Nov 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 47 additions & 46 deletions src/arithmetic/bigint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@

use self::boxed_limbs::BoxedLimbs;
pub(crate) use self::{
modulus::{Modulus, PartialModulus, MODULUS_MAX_LIMBS},
modulus::{Modulus, OwnedModulusWithOne, MODULUS_MAX_LIMBS},
private_exponent::PrivateExponent,
};
use super::n0::N0;
Expand Down Expand Up @@ -186,20 +186,9 @@ impl<M> Elem<M, Unencoded> {
}

pub fn elem_mul<M, AF, BF>(
a: &Elem<M, AF>,
b: Elem<M, BF>,
m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
{
elem_mul_(a, b, &m.as_partial())
}

fn elem_mul_<M, AF, BF>(
a: &Elem<M, AF>,
mut b: Elem<M, BF>,
m: &PartialModulus<M>,
m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
Expand All @@ -211,7 +200,7 @@ where
}
}

fn elem_mul_by_2<M, AF>(a: &mut Elem<M, AF>, m: &PartialModulus<M>) {
fn elem_mul_by_2<M, AF>(a: &mut Elem<M, AF>, m: &Modulus<M>) {
prefixed_extern! {
fn LIMBS_shl_mod(r: *mut Limb, a: *const Limb, m: *const Limb, num_limbs: c::size_t);
}
Expand Down Expand Up @@ -254,7 +243,7 @@ pub fn elem_reduced<Larger, Smaller: NotMuchSmallerModulus<Larger>>(

fn elem_squared<M, E>(
mut a: Elem<M, E>,
m: &PartialModulus<M>,
m: &Modulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
(E, E): ProductEncoding,
Expand Down Expand Up @@ -316,7 +305,7 @@ impl<M> One<M, RR> {
// values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`,
// is correct because R**2 will still be a multiple of the latter as
// `N0::LIMBS_USED` is either one or two.
fn newRR(m: &PartialModulus<M>, m_bits: bits::BitLength) -> Self {
fn newRR(m: &Modulus<M>, m_bits: bits::BitLength) -> Self {
let m_bits = m_bits.as_usize_bits();
let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS;

Expand Down Expand Up @@ -390,7 +379,7 @@ impl<M: PublicModulus, E> Clone for One<M, E> {
pub(crate) fn elem_exp_vartime<M>(
base: Elem<M, R>,
exponent: NonZeroU64,
m: &PartialModulus<M>,
m: &Modulus<M>,
) -> Elem<M, R> {
// Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
// square-and-multiply that scans the exponent from the most significant
Expand All @@ -417,7 +406,7 @@ pub(crate) fn elem_exp_vartime<M>(
bit >>= 1;
acc = elem_squared(acc, m);
if (exponent & bit) != 0 {
acc = elem_mul_(&base, acc, m);
acc = elem_mul(&base, acc, m);
}
}
acc
Expand All @@ -426,17 +415,20 @@ pub(crate) fn elem_exp_vartime<M>(
/// Uses Fermat's Little Theorem to calculate modular inverse in constant time.
pub fn elem_inverse_consttime<M: Prime>(
a: Elem<M, R>,
m: &Modulus<M>,
m: &OwnedModulusWithOne<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
elem_exp_consttime(a, &PrivateExponent::for_flt(m), m)
elem_exp_consttime(a, &PrivateExponent::for_flt(&m.modulus()), m)
}

#[cfg(not(target_arch = "x86_64"))]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
m: &OwnedModulusWithOne<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
let oneRR = m.oneRR();
let m = &m.modulus();

use crate::{bssl, limb::Window};

const WINDOW_BITS: usize = 5;
Expand Down Expand Up @@ -469,7 +461,7 @@ pub fn elem_exp_consttime<M>(
mut tmp: Elem<M, R>,
) -> (Elem<M, R>, Elem<M, R>) {
for _ in 0..WINDOW_BITS {
acc = elem_squared(acc, &m.as_partial());
acc = elem_squared(acc, m);
}
gather(table, &mut tmp, i);
let acc = elem_mul(&tmp, acc, m);
Expand All @@ -489,7 +481,7 @@ pub fn elem_exp_consttime<M>(
// `table` was initialized to zero and hasn't changed.
debug_assert!(acc.iter().all(|&value| value == 0));
acc[0] = 1;
limbs_mont_mul(acc, &m.oneRR().0.limbs, m.limbs(), m.n0(), m.cpu_features());
limbs_mont_mul(acc, &oneRR.0.limbs, m.limbs(), m.n0(), m.cpu_features());
}

entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs);
Expand Down Expand Up @@ -527,10 +519,13 @@ pub fn elem_exp_consttime<M>(
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
m: &OwnedModulusWithOne<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
use crate::limb::LIMB_BYTES;

let oneRR = m.oneRR();
let m = &m.modulus();

// Pretty much all the math here requires CPU feature detection to have
// been done. `cpu_features` isn't threaded through all the internal
// functions, so just make it clear that it has been done at this point.
Expand Down Expand Up @@ -685,7 +680,7 @@ pub fn elem_exp_consttime<M>(
// encode it.
debug_assert!(acc.iter().all(|&value| value == 0));
acc[0] = 1;
limbs_mont_mul(acc, &m.oneRR().0.limbs, m_cached, n0, cpu_features);
limbs_mont_mul(acc, &oneRR.0.limbs, m_cached, n0, cpu_features);
scatter(table, acc, 0, num_limbs);

// acc = base**1 (i.e. base).
Expand Down Expand Up @@ -853,16 +848,17 @@ mod tests {
|section, test_case| {
assert_eq!(section, "");

let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m_ = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m_.modulus();
let expected_result = consume_elem(test_case, "ModExp", &m);
let base = consume_elem(test_case, "A", &m);
let e = {
let bytes = test_case.consume_bytes("E");
PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m)
.expect("valid exponent")
};
let base = into_encoded(base, &m);
let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
let base = into_encoded(base, &m_);
let actual_result = elem_exp_consttime(base, &e, &m_).unwrap();
assert_elem_eq(&actual_result, &expected_result);

Ok(())
Expand All @@ -882,13 +878,14 @@ mod tests {
|section, test_case| {
assert_eq!(section, "");

let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m_ = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m_.modulus();
let expected_result = consume_elem(test_case, "ModMul", &m);
let a = consume_elem(test_case, "A", &m);
let b = consume_elem(test_case, "B", &m);

let b = into_encoded(b, &m);
let a = into_encoded(a, &m);
let b = into_encoded(b, &m_);
let a = into_encoded(a, &m_);
let actual_result = elem_mul(&a, b, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Expand All @@ -906,12 +903,13 @@ mod tests {
|section, test_case| {
assert_eq!(section, "");

let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m_ = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m_.modulus();
let expected_result = consume_elem(test_case, "ModSquare", &m);
let a = consume_elem(test_case, "A", &m);

let a = into_encoded(a, &m);
let actual_result = elem_squared(a, &m.as_partial());
let a = into_encoded(a, &m_);
let actual_result = elem_squared(a, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);

Expand All @@ -932,13 +930,14 @@ mod tests {
unsafe impl SmallerModulus<MM> for M {}
unsafe impl NotMuchSmallerModulus<MM> for M {}

let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m_ = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m_.modulus();
let expected_result = consume_elem(test_case, "R", &m);
let a =
consume_elem_unchecked::<MM>(test_case, "A", expected_result.limbs.len() * 2);

let actual_result = elem_reduced(&a, &m);
let oneRR = m.oneRR();
let oneRR = m_.oneRR();
let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
assert_elem_eq(&actual_result, &expected_result);

Expand All @@ -961,11 +960,11 @@ mod tests {
unsafe impl SlightlySmallerModulus<N> for QQ {}

let qq = consume_modulus::<QQ>(test_case, "QQ", cpu_features);
let expected_result = consume_elem::<QQ>(test_case, "R", &qq);
let expected_result = consume_elem::<QQ>(test_case, "R", &qq.modulus());
let n = consume_modulus::<N>(test_case, "N", cpu_features);
let a = consume_elem::<N>(test_case, "A", &n);
let a = consume_elem::<N>(test_case, "A", &n.modulus());

let actual_result = elem_reduced_once(&a, &qq);
let actual_result = elem_reduced_once(&a, &qq.modulus());
assert_elem_eq(&actual_result, &expected_result);

Ok(())
Expand All @@ -975,7 +974,7 @@ mod tests {

#[test]
fn test_modulus_debug() {
let (modulus, _) = Modulus::<M>::from_be_bytes_with_bit_length(
let (modulus, _) = OwnedModulusWithOne::<M>::from_be_bytes_with_bit_length(
untrusted::Input::from(&[0xff; LIMB_BYTES * MODULUS_MIN_LIMBS]),
cpu::features(),
)
Expand Down Expand Up @@ -1010,11 +1009,13 @@ mod tests {
test_case: &mut test::TestCase,
name: &str,
cpu_features: cpu::Features,
) -> Modulus<M> {
) -> OwnedModulusWithOne<M> {
let value = test_case.consume_bytes(name);
let (value, _) =
Modulus::from_be_bytes_with_bit_length(untrusted::Input::from(&value), cpu_features)
.unwrap();
let (value, _) = OwnedModulusWithOne::from_be_bytes_with_bit_length(
untrusted::Input::from(&value),
cpu_features,
)
.unwrap();
value
}

Expand All @@ -1031,7 +1032,7 @@ mod tests {
}
}

fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
elem_mul(m.oneRR().as_ref(), a, m)
fn into_encoded<M>(a: Elem<M, Unencoded>, m: &OwnedModulusWithOne<M>) -> Elem<M, R> {
elem_mul(m.oneRR().as_ref(), a, &m.modulus())
}
}
Loading
Loading