Official Pytorch implementation of the paper Dual-Cross-Attention for Medical Image Segmentation
We propose Dual Cross-Attention (DCA), a simple yet effective attention module that is able to enhance skip-connections in U-Net-based architectures for medical image segmentation. Our proposed module addresses the semantic gap between encoder and decoder features by sequentially capturing channel and spatial dependencies across multi-scale encoder features.
We test our method on GlaS, MoNuSeg, Kvasir-Seg, CVC-ClinicDB and Synapse datasets.
Params | GlaS | GlaS | MoNuSeg | MoNuSeg | CVC-ClinicDB | CVC-ClinicDB | Kvasir-Seg | Kvasir-Seg | Synapse | Synapse | |
---|---|---|---|---|---|---|---|---|---|---|---|
DSC | IoU | DSC | IoU | DSC | IoU | DSC | IoU | DSC | IoU | ||
U-net | 8.64M | 0.8887 | 0.7998 | 0.7714 | 0.6279 | 0.8963 | 0.8143 | 0.8299 | 0.7101 | 0.7855 | 0.6737 |
U-Net(DCA) | 8.75M | 0.8966 | 0.8129 | 0.7813 | 0.6411 | 0.8953 | 0.8128 | 0.8403 | 0.7253 | 0.7898 | 0.6797 |
ResUnet++ | 13.1M | 0.8543 | 0.7462 | 0.7568 | 0.6087 | 0.8946 | 0.8114 | 0.8226 | 0.6993 | 0.7591 | 0.6461 |
ResUnet++(DCA) | 13.1M | 0.8735 | 0.7756 | 0.7740 | 0.6313 | 0.9019 | 0.8232 | 0.8207 | 0.6974 | 0.7735 | 0.6643 |
MultiResUnet | 7.24M | 0.8899 | 0.8018 | 0.7699 | 0.6259 | 0.8952 | 0.8135 | 0.8134 | 0.6866 | 0.7812 | 0.6730 |
MultiResUnet (DCA) | 7.35M | 0.8886 | 0.7998 | 0.7852 | 0.6463 | 0.8995 | 0.8191 | 0.8232 | 0.7000 | 0.7950 | 0.6865 |
R2Unet | 9.78M | 0.8516 | 0.7426 | 0.7820 | 0.6420 | 0.8812 | 0.7888 | 0.8107 | 0.6828 | 0.7586 | 0.6394 |
R2Unet(DCA) | 9.89M | 0.8721 | 0.7737 | 0.7852 | 0.6464 | 0.8839 | 0.7928 | 0.8219 | 0.6989 | 0.7590 | 0.6485 |
V-Net | 35.97M | 0.8878 | 0.7985 | 0.7479 | 0.5974 | 0.8809 | 0.7902 | 0.8079 | 0.6807 | 0.7927 | 0.6858 |
V-Net(DCA) | 36.08M | 0.8903 | 0.8027 | 0.7753 | 0.6331 | 0.8946 | 0.8107 | 0.8192 | 0.6953 | 0.7958 | 0.6900 |
DoubleUnet | 29.68M | 0.8907 | 0.8030 | 0.7716 | 0.6282 | 0.9020 | 0.8235 | 0.8440 | 0.7308 | 0.7976 | 0.6931 |
DoubleUnet (DCA) | 30.68M | 0.8990 | 0.8168 | 0.7950 | 0.6597 | 0.9086 | 0.8347 | 0.8516 | 0.7434 | 0.8022 | 0.6980 |
If you find this repo useful, please cite:
@misc{ates2023dual,
title={Dual Cross-Attention for Medical Image Segmentation},
author={Gorkem Can Ates and Prasoon Mohan and Emrah Celik},
year={2023},
eprint={2303.17696},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
Gorkem Can Ates ([email protected])