Skip to content

Official Pytorch implementation of Dual Cross-Attention for Medical Image Segmentation

License

Notifications You must be signed in to change notification settings

gorkemcanates/Dual-Cross-Attention

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dual-Cross-Attention for Medical Image Segmentation

Official Pytorch implementation of the paper Dual-Cross-Attention for Medical Image Segmentation

dca

We propose Dual Cross-Attention (DCA), a simple yet effective attention module that is able to enhance skip-connections in U-Net-based architectures for medical image segmentation. Our proposed module addresses the semantic gap between encoder and decoder features by sequentially capturing channel and spatial dependencies across multi-scale encoder features.

Benchmark Results

We test our method on GlaS, MoNuSeg, Kvasir-Seg, CVC-ClinicDB and Synapse datasets.

Params GlaS GlaS MoNuSeg MoNuSeg CVC-ClinicDB CVC-ClinicDB Kvasir-Seg Kvasir-Seg Synapse Synapse
DSC IoU DSC IoU DSC IoU DSC IoU DSC IoU
U-net 8.64M 0.8887 0.7998 0.7714 0.6279 0.8963 0.8143 0.8299 0.7101 0.7855 0.6737
U-Net(DCA) 8.75M 0.8966 0.8129 0.7813 0.6411 0.8953 0.8128 0.8403 0.7253 0.7898 0.6797
ResUnet++ 13.1M 0.8543 0.7462 0.7568 0.6087 0.8946 0.8114 0.8226 0.6993 0.7591 0.6461
ResUnet++(DCA) 13.1M 0.8735 0.7756 0.7740 0.6313 0.9019 0.8232 0.8207 0.6974 0.7735 0.6643
MultiResUnet 7.24M 0.8899 0.8018 0.7699 0.6259 0.8952 0.8135 0.8134 0.6866 0.7812 0.6730
MultiResUnet (DCA) 7.35M 0.8886 0.7998 0.7852 0.6463 0.8995 0.8191 0.8232 0.7000 0.7950 0.6865
R2Unet 9.78M 0.8516 0.7426 0.7820 0.6420 0.8812 0.7888 0.8107 0.6828 0.7586 0.6394
R2Unet(DCA) 9.89M 0.8721 0.7737 0.7852 0.6464 0.8839 0.7928 0.8219 0.6989 0.7590 0.6485
V-Net 35.97M 0.8878 0.7985 0.7479 0.5974 0.8809 0.7902 0.8079 0.6807 0.7927 0.6858
V-Net(DCA) 36.08M 0.8903 0.8027 0.7753 0.6331 0.8946 0.8107 0.8192 0.6953 0.7958 0.6900
DoubleUnet 29.68M 0.8907 0.8030 0.7716 0.6282 0.9020 0.8235 0.8440 0.7308 0.7976 0.6931
DoubleUnet (DCA) 30.68M 0.8990 0.8168 0.7950 0.6597 0.9086 0.8347 0.8516 0.7434 0.8022 0.6980

Citations

If you find this repo useful, please cite:

@misc{ates2023dual,
      title={Dual Cross-Attention for Medical Image Segmentation}, 
      author={Gorkem Can Ates and Prasoon Mohan and Emrah Celik},
      year={2023},
      eprint={2303.17696},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Contact

Gorkem Can Ates ([email protected])

About

Official Pytorch implementation of Dual Cross-Attention for Medical Image Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages