Skip to content

Commit

Permalink
Fixes
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed Jun 3, 2024
1 parent fad63cb commit 587e596
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -598,7 +598,7 @@ \subsection{Cohen--Seidenberg theorems}
Suppose that \( \mathfrak q \) and \( \mathfrak q' \) contract to the same prime ideal \( \mathfrak p = \mathfrak q \cap A = \mathfrak q' \cap A \) of \( A \), and that \( \mathfrak q \subseteq \mathfrak q' \).
Then \( \mathfrak q = \mathfrak q' \).
\end{proposition}
We will write \( B_{\mathfrak p} \) for \( (A \setminus \mathfrak p)^{-1} B \), but this is not in general a ring.
In this section, we will write \( B_{\mathfrak p} \) to abbreviate \( (A \setminus \mathfrak p)^{-1} B \).
\begin{proof}
Define \( S = A \setminus \mathfrak p \).
Then \( \mathfrak q \) and \( \mathfrak q' \) are prime ideals of \( B \) not intersecting \( S \).
Expand Down
10 changes: 5 additions & 5 deletions iii/commalg/07_dimension_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -174,31 +174,31 @@ \subsection{Dimension theory of local Noetherian rings}

Let \( \mathfrak q \) be an \( \mathfrak m \)-primary ideal of \( A \), generated by \( x_1, \dots, x_s \) where \( s = \delta(\mathfrak q) \).
Then
\[ G_{\mathfrak q}(A) = \faktor{A}{\mathfrak q} \oplus \faktor{\mathfrak q}{\mathfrak q^2} \oplus \oplus_{n \geq 2} \faktor{\mathfrak q^n}{\mathfrak q^{n+1}} \]
\[ G_{\mathfrak q}(A) = \faktor{A}{\mathfrak q} \oplus \faktor{\mathfrak q}{\mathfrak q^2} \oplus \bigoplus_{n \geq 2} \faktor{\mathfrak q^n}{\mathfrak q^{n+1}} \]
The first factor \( \faktor{A}{\mathfrak q} \) is Artinian, and the images of \( x_1, \dots, x_s \) generate \( G_{\mathfrak q}(A) \) as an \( \faktor{A}{\mathfrak q} \)-algebra, where the \( x_i \) are of degree 1.
Then \( \ell\qty(\faktor{\mathfrak q^n}{\mathfrak q^{n+1}}) < \infty \).
From the theorem on Hilbert polynomials, \( \ell\qty(\faktor{\mathfrak q^n}{\mathfrak q^{n+1}}) \) is a polynomial in \( n \) of degree at most \( \delta(\mathfrak q) - 1 \), for sufficiently large \( n \).

Fix some \( \mathfrak m \)-primary ideal \( \mathfrak q_0 \) such that \( \delta(\mathfrak q_0) = \delta(A) \).
We consider two special cases: \( \mathfrak q = \mathfrak q_0 \) and \( \mathfrak q = \mathfrak m \).
For \( \mathfrak q \), we have
\[ \deg \ell\qty(\faktor{\mathfrak q_0^n}{\mathfrak q^0_{n+1}}) \leq \delta(A) - 1 \]
For \( \mathfrak q_0 \), we have
\[ \deg \ell\qty(\faktor{\mathfrak q_0^n}{\mathfrak q_0^{n+1}}) \leq \delta(A) - 1 \]
As
\[ \ell\qty(\faktor{A}{\mathfrak q_0^n}) = \sum_{i=0}^{n-1} \ell\qty(\faktor{\mathfrak q_0^i}{\mathfrak q_0^{i+1}}) \]
we have
\[ \deg \ell\qty(\faktor{A}{\mathfrak q_0^n}) \leq \delta(A) \]
For \( \mathfrak m \),
\[ \deg \ell\qty(\faktor{\mathfrak m^n}{\mathfrak m^{n+1}}) = d(G_{\mathfrak m}(A)) - 1 \]
and hence
\[ \deg \ell\qty(\faktor{A}{\mathfrak m^n}) = d(G_{\mathfrak m})(A) \]
\[ \deg \ell\qty(\faktor{A}{\mathfrak m^n}) = d(G_{\mathfrak m}(A)) \]

Now, there exists \( t \geq 1 \) such that \( \mathfrak m^t \subseteq \mathfrak q_0 \subseteq \mathfrak m \).
Then
\[ \ell\qty(\faktor{A}{\mathfrak m^n}) \leq \ell\qty(\faktor{A}{\mathfrak q_0^n}) \leq \ell\qty(\faktor{A}{\mathfrak m^{tn}}) \]
But all of these terms are eventually polynomial, and the degrees of the left-hand and right-hand sides are the same, so we must have \( \ell\qty(\faktor{A}{\mathfrak q_0^n}) = \ell\qty(\faktor{A}{\mathfrak m^n}) \).

\begin{proposition}
\( \delta(A) \geq d(G_{\mathfrak m})(A) \)
\( \delta(A) \geq d(G_{\mathfrak m}(A)) \).
\end{proposition}
\begin{proof}
\[ \delta(A) = \delta(\mathfrak q_0) \geq \deg \ell\qty(\faktor{A}{\mathfrak q_0^n}) = \deg \ell\qty(\faktor{A}{\mathfrak m^n}) = d(G_{\mathfrak m}(A)) \]
Expand Down

0 comments on commit 587e596

Please sign in to comment.