Skip to content

Commit

Permalink
Minor fix
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed Feb 9, 2024
1 parent 4890945 commit 279b705
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions iii/forcing/02_constructibility.tex
Original file line number Diff line number Diff line change
Expand Up @@ -412,12 +412,12 @@ \subsection{Well-ordering the universe}
\item \( <_{\alpha + 1}^0 \) is the well-ordering of \( \mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha} \) given by making \( \qty{\mathrm{L}_\alpha} \) the maximal element.
\item Suppose that \( <_{\alpha + 1}^n \) is defined.
We end-extend \( <_{\alpha + 1}^n \) to form \( <_{\alpha + 1}^{n + 1} \) as follows.
Suppose \( x, y \notin \mathcal D^n(\mathrm{L}_\alpha) \).
Suppose \( x, y \notin \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \).
We say \( x <_{\alpha + 1}^{n+1} \) if either
\begin{enumerate}
\item the least \( i \leq 10 \) such that \( \exists u, v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( x = \mathcal F_i(u, v) \) is less than the least \( i \leq 10 \) such that \( \exists u, v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( \mathcal y = \mathcal F_i(u, v) \); or
\item these indices \( i \) are equal, and the \( <_{\alpha + 1}^n \)-least \( u \in \mathcal D^n(\mathrm{L}_\alpha) \) such that there exists \( v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( x = \mathcal F_i(u, v) \) is less than the \( <_{\alpha + 1}^n \)-least \( u \in \mathcal D^n(\mathrm{L}_\alpha) \) such that there exists \( v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( y = \mathcal F_i(u, v) \); or
\item both of these coincide, and \( <_{\alpha + 1}^n \)-least \( v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( x = \mathcal F_i(u, v) \) is less than the least \( v \in \mathcal D^n(\mathrm{L}_\alpha) \) with \( y = \mathcal F_i(u, v) \).
\item the least \( i \leq 10 \) such that \( \exists u, v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( x = \mathcal F_i(u, v) \) is less than the least \( i \leq 10 \) such that \( \exists u, v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( \mathcal y = \mathcal F_i(u, v) \); or
\item these indices \( i \) are equal, and the \( <_{\alpha + 1}^n \)-least \( u \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) such that there exists \( v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( x = \mathcal F_i(u, v) \) is less than the \( <_{\alpha + 1}^n \)-least \( u \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) such that there exists \( v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( y = \mathcal F_i(u, v) \); or
\item both of these coincide, and \( <_{\alpha + 1}^n \)-least \( v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( x = \mathcal F_i(u, v) \) is less than the least \( v \in \mathcal D^n(\mathrm{L}_\alpha \cup \qty{\mathrm{L}_\alpha}) \) with \( y = \mathcal F_i(u, v) \).
\end{enumerate}
\end{enumerate}
\end{proof}
Expand Down

0 comments on commit 279b705

Please sign in to comment.