Skip to content

Commit

Permalink
Lectures 10
Browse files Browse the repository at this point in the history
  • Loading branch information
zeramorphic committed Feb 1, 2024
1 parent abe589b commit 1116c59
Showing 1 changed file with 164 additions and 1 deletion.
165 changes: 164 additions & 1 deletion iii/forcing/01.tex
Original file line number Diff line number Diff line change
Expand Up @@ -523,7 +523,7 @@ \subsection{The reflection theorem}
\eta & \text{where } \eta \text{ is the least ordinal such that } \exists x \in W_\eta.\, \varphi_j^W(x, \vb y)
\end{cases} \]
We set
\[ G_i(\delta) = \sup{F_i(\vb y) \mid y \in W_\delta^{k_i}} \]
\[ G_i(\delta) = \sup\qty{F_i(\vb y) \mid y \in W_\delta^{k_i}} \]
If \( \varphi_i \) is not of this form, we set \( G_i(\delta) = 0 \) for all \( \delta \).
Finally, we let
\[ K(\delta) = \max\qty{\delta + 1, G_1(\delta), \dots, G_n(\delta)} \]
Expand Down Expand Up @@ -590,3 +590,166 @@ \subsection{The reflection theorem}
\end{proof}

\subsection{Cardinal arithmetic}
In this subsection, we will use the axiom of choice.
We recall the following basic definitions and results.
\begin{definition}
The \emph{cardinality} of a set \( x \), written \( \abs{x} \) is the least ordinal \( \alpha \) such that there is a bijection \( x \to \alpha \).
\end{definition}
This definition only makes sense given the well-ordering principle.
\begin{definition}
The cardinal arithmetic operations are defined as follows.
Let \( \kappa, \lambda \) be cardinals.
\begin{enumerate}
\item \( \kappa + \lambda = \abs{0 \times \kappa \cup 1 \times \lambda} \);
\item \( \kappa \cdot \lambda = \abs{\kappa \times \lambda} \);
\item \( \kappa^\lambda = \abs{\kappa^\lambda} \), the cardinality of the set of functions \( \lambda \to \kappa \);
\item \( \kappa^{<\lambda} = \sup\qty{\kappa^\alpha \mid \alpha < \lambda, \alpha \text{ a cardinal}} \).
\end{enumerate}
\end{definition}
\begin{theorem}[Hessenberg]
If \( \kappa, \lambda \) are infinite cardinals, then
\[ \kappa + \lambda = \kappa \cdot \lambda = \max\qty{\kappa, \lambda} \]
\end{theorem}
\begin{lemma}
If \( \kappa, \lambda, \mu \) are cardinals, then
\[ \kappa^{\lambda + \mu} = \kappa^\lambda \cdot \kappa^\mu;\quad (\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu} \]
\end{lemma}
\begin{definition}
A map between ordinals \( \alpha \to \beta \) is \emph{cofinal} if \( \sup \operatorname{ran} f = \beta \).
The \emph{cofinality} of an ordinal \( \gamma \), written \( \cf(\gamma) \), is the least ordinal that admits a cofinal map to \( \gamma \).
A limit ordinal \( \gamma \) is \emph{singular} if \( \cf(\gamma) < \gamma \), and \emph{regular} if \( \cf(\gamma) = \gamma \).
\end{definition}
\begin{remark}
\begin{enumerate}
\item Since the identity map is always cofinal, we have \( \cf(\gamma) \leq \gamma \).
\item \( \omega = \cf(\omega) = \cf(\omega + \omega) = \cf(\aleph_\omega) \).
\item \( \cf(\gamma) \leq \abs{\gamma} \).
\end{enumerate}
\end{remark}
\begin{theorem}
Let \( \gamma \) be a limit ordinal.
Then
\begin{enumerate}
\item if \( \gamma \) is regular, \( \gamma \) is a cardinal;
\item the cardinal successor \( \gamma^+ \) is a regular cardinal;
\item \( \cf(\cf(\gamma)) = \cf(\gamma) \), so \( \cf(\gamma) \) is regular;
\item \( \aleph_\alpha \) is regular whenever \( \alpha = 0 \) or a successor;
\item if \( \lambda \) is a limit ordinal, \( \cf(\aleph_\lambda) = \cf(\lambda) \).
\end{enumerate}
\end{theorem}
\begin{theorem}
Let \( \kappa \) be a regular cardinal.
If \( \mathcal F \) is a family of sets with \( \abs{\mathcal F} < \kappa \) and each \( \abs{X} < \kappa \) for \( X \in \mathcal F \), then \( \abs{\bigcup \mathcal F} < \kappa \).
\end{theorem}
\begin{proof}
We show this by induction on \( \abs{\mathcal F} = \gamma < \kappa \).
Suppose the claim holds for \( \gamma \), and consider \( \mathcal F = \qty{X_\alpha \mid \alpha < \gamma + 1} \).
Then, assuming the sets involved are infinite,
\[ \abs{\bigcup \mathcal F} = \abs{\bigcup_{\alpha < \gamma} X_\alpha \cup X_\gamma} = \abs{\bigcup_{\alpha < \gamma} X_\alpha} + \abs{X_\gamma} = \max\qty{\abs{\bigcup_{\alpha < \gamma} X_\alpha}, \abs{X_\gamma}} < \kappa \]
Now suppose \( \gamma \) is a limit, and suppose the claim holds for all \( \beta < \gamma \).
Let \( \mathcal F = \qty{X_\alpha \mid \alpha < \gamma} \), and define \( g : \gamma \to \kappa \) by
\[ g(\beta) = \abs{\bigcup_{\alpha < \beta} X_\beta} \]
But \( \kappa \) is regular and \( \gamma < \kappa \), so this map is not cofinal.
Hence \( g '' \gamma = \abs{\bigcup \mathcal F} < \kappa \).
\end{proof}
We can generalise the notions of cardinal sum and product as follows.
\begin{definition}
Let \( (\kappa_i)_{i \in I} \) be an indexed sequence of cardinals, and let \( (X_i)_{i \in I} \) be a sequence of pairwise disjoint sets with \( \abs{X_i} = \kappa_i \) for all \( i \in I \).
Then the \emph{cardinal sum} of \( (\kappa_i) \) is
\[ \sum_{i \in I} \kappa_i = \abs{\bigcup_{i \in I} X_i} \]
The \emph{cardinal product} is
\[ \prod_{i \in I} \kappa_i = \abs{\prod_{i \in I} X_i} \]
where \( \prod_{i \in I} X_i \) denotes the set of functions \( f : I \to \bigcup_{i \in I} X_i \) such that \( f(i) \in X_i \) for each \( i \).
\end{definition}
The following theorem generalises Cantor's diagonal argument.
\begin{theorem}[K\"onig's theorem]
Let \( I \) be an indexing set, and suppose that \( \kappa_i < \lambda_i \) for all \( i \in I \).
Then
\[ \sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i \]
\end{theorem}
\begin{proof}
Let \( (B_i)_{i \in I} \) be a sequence of disjoint sets with \( \abs{B_i} = \lambda_i \), and let \( B = \prod_{i \in I} B_i \).
It suffices to show that for any sequence \( (A_i)_{i \in I} \) of subsets of \( B \) such that for all \( i \in I \), \( \abs{A_i} = \kappa_i \), then
\[ \bigcup_{i \in I} A_i \neq B \]
Given such a sequence, we let \( S_i \) be the projection of \( A_i \) onto its \( i \)th coordinate.
\[ S_i = \qty{f(i) \mid f \in A_i} \]
Then by definition, \( S_i \subseteq B_i \), and
\[ \abs{S_i} \leq \abs{A_i} = \kappa_i < \lambda_i = \abs{B_i} \]
Fix \( t_i \in B_i \setminus S_i \).
Finally, we define \( g \in B \) by \( g(i) = t_i \); by construction, we have \( g \notin A_i \) for all \( i \), so \( g \in B \) but \( g \notin \bigcup_{i \in I} A_i \).
\end{proof}
\begin{corollary}
If \( \kappa \geq 2 \) and \( \lambda \) is infinite, then
\[ \kappa^\lambda > \lambda \]
\end{corollary}
\begin{proof}
\[ \lambda = \sum_{\alpha < \lambda} 1 < \prod_{\alpha < \lambda} 2 = 2^\lambda \leq \kappa^\lambda \]
\end{proof}
\begin{corollary}
\( \cf(2^\lambda) > \lambda \).
\end{corollary}
\begin{proof}
Let \( f : \lambda \to 2^\lambda \), we show that \( \abs{\bigcup f '' \lambda} < 2^\lambda \).
Since for all \( i \in I \), we have \( f(i) < 2^\lambda \), we deduce
\[ \abs{\bigcup f '' \lambda} = \sum_{i < \lambda} f(i) < \prod_{i < \lambda} 2^\lambda = (2^\lambda)^\lambda = 2^{\lambda \cdot \lambda} = 2^\lambda \]
\end{proof}
\begin{corollary}
\( 2^{\aleph_0} \neq \kappa \) for any \( \kappa \) of cofinality \( \aleph_0 \).
In particular, \( 2^{\aleph_0} \neq \aleph_\omega \).
\end{corollary}
\begin{corollary}
\( \kappa^{\cf(\kappa)} > \kappa \) for every infinite cardinal \( \kappa \).
\end{corollary}
We can prove very little in general about cardinal exponentiation given \( \mathsf{ZFC} \).
\begin{definition}
The \emph{generalised continuum hypothesis} is the statement that \( 2^\kappa = \kappa^+ \) for every infinite cardinal \( \kappa \).
Equivalently, \( 2^{\aleph_\alpha} = \aleph_{\alpha + 1} \).
\end{definition}
Under this assumption, we can show the following.
\begin{theorem}
(\( \mathsf{ZFC} + \mathsf{GCH} \))
Let \( \kappa, \lambda \) be infinite cardinals.
\begin{enumerate}
\item if \( \kappa < \lambda \), then \( \kappa^\lambda = \lambda^+ \);
\item if \( \cf(\kappa) \leq \lambda < \kappa \), then \( \kappa^\lambda = \kappa^+ \);
\item if \( \lambda < \cf(\kappa) \), then \( \kappa^\lambda = \kappa \).
\end{enumerate}
\end{theorem}
When we construct models with certain properties of cardinal arithmetic, we will often want to start with a model satisfying \( \mathsf{GCH} \) so that we have full control over cardinal exponentiation.
Without this assumption, we know much less.
The following theorems are essentially the only restrictions that we have on regular cardinals that are provable in \( \mathsf{ZFC} \).
\begin{theorem}
Let \( \kappa, \lambda \) be cardinals.
Then
\begin{enumerate}
\item if \( \kappa < \lambda \), then \( 2^\kappa \leq 2^\lambda \);
\item \( \cf(2^\kappa) > \kappa \);
\item if \( \kappa \) is a limit cardinal, then \( 2^\kappa = (2^{<\kappa})^{\cf(\kappa)} \).
\end{enumerate}
\end{theorem}
\begin{theorem}
Let \( \kappa, \lambda \) be infinite cardinals.
Then
\begin{enumerate}
\item if \( \kappa \leq \lambda \), then \( \kappa^\lambda = 2^\lambda \);
\item if \( \mu < \kappa \) is such that \( \mu^\lambda \geq \kappa \), then \( \kappa^\lambda = \mu^\lambda \);
\item if \( \kappa < \lambda \) and \( \mu^\lambda < \kappa \) for all \( \mu < \kappa \), then
\begin{enumerate}
\item if \( \cf(\kappa) > \lambda \), then \( \kappa^\lambda = \kappa \);
\item if \( \cf(\kappa) \leq \lambda \), then \( \kappa^\lambda = \kappa^{\cf(\kappa)} \).
\end{enumerate}
\end{enumerate}
\end{theorem}
\begin{theorem}[Silver]
Suppose that \( \kappa \) is a singular cardinal such that \( \cf(\kappa) > \aleph_0 \) and \( 2^\alpha = \alpha^+ \) for all \( \alpha < \kappa \).
Then \( 2^\kappa = \kappa^+ \).
\end{theorem}
This theorem therefore states that the generalised continuum hypothesis cannot first break at a singular cardinal with cofinality larger than \( \aleph_0 \).
\begin{remark}
It is consistent (relative to large cardinals, such as a measurable cardinal) to have \( 2^{\aleph_n} = \aleph_{n + 1} \) for all \( n \in \omega \), but \( 2^{\aleph_\omega} = \aleph_{\omega + 2} \).
\end{remark}
\begin{theorem}[Shelah]
Suppose that \( 2^{\aleph_n} < \aleph_\omega \) for all \( n \in \omega \), so \( \aleph_\omega \) is a strong limit cardinal.
Then \( 2^{\aleph_\omega} < \aleph_{\omega_4} \).
\end{theorem}
It is not known if this bound can be improved, but it is conjectured that \( 2^{\aleph_\omega} < \aleph_{\omega_1} \).

0 comments on commit 1116c59

Please sign in to comment.