-
Notifications
You must be signed in to change notification settings - Fork 4
Eval详细结果(Attention相关模型)
Heda Wang edited this page Nov 3, 2017
·
1 revision
Semantic Attention is the word-hashed one, train 105k steps and train_inception_with_decay to 600k steps, initlr=1.0, decay=0.6.
epoch | Bleu_4 | CIDEr | METEOR | ROUGE_L |
---|---|---|---|---|
107001 | 0.2638 | 0.5634 | 0.2726 | 0.5011 |
120053 | 0.3978 | 1.0530 | 0.3307 | 0.5805 |
140132 | 0.4233 | 1.1623 | 0.3475 | 0.6029 |
161037 | 0.4408 | 1.2202 | 0.3524 | 0.6113 |
180265 | 0.5000 | 1.4703 | 0.3783 | 0.6471 |
200351 | 0.4991 | 1.4741 | 0.3794 | 0.6467 |
221452 | 0.4823 | 1.3863 | 0.3664 | 0.6336 |
240649 | 0.5144 | 1.5623 | 0.3851 | 0.6557 |
260617 | 0.5163 | 1.5325 | 0.3880 | 0.6560 |
281553 | 0.5354 | 1.6334 | 0.3953 | 0.6670 |
300457 | 0.5403 | 1.6507 | 0.3962 | 0.6694 |
320328 | 0.5432 | 1.6586 | 0.3983 | 0.6726 |
341305 | 0.5571 | 1.7124 | 0.4042 | 0.6803 |
361672 | 0.5533 | 1.7025 | 0.4043 | 0.6777 |
381049 | 0.5517 | 1.7009 | 0.4013 | 0.6763 |
400866 | 0.5582 | 1.7284 | 0.4059 | 0.6810 |
421739 | 0.5571 | 1.7205 | 0.4052 | 0.6798 |
440685 | 0.5588 | 1.7378 | 0.4071 | 0.6828 |
460547 | 0.5644 | 1.7443 | 0.4085 | 0.6837 |
481648 | 0.5641 | 1.7476 | 0.4081 | 0.6839 |
500313 | 0.5610 | 1.7364 | 0.4066 | 0.6820 |
521550 | 0.5642 | 1.7599 | 0.4082 | 0.6838 |
541261 | 0.5640 | 1.7546 | 0.4078 | 0.6836 |
560138 | 0.5645 | 1.7573 | 0.4084 | 0.6844 |
580973 | 0.5647 | 1.7596 | 0.4086 | 0.6843 |
600000 | 0.5620 | 1.7554 | 0.4090 | 0.6841 |
Postag lexicla embedding, 2-layer lstm, visual attention. First train 105k steps and then finetune with decay to 600k steps, initlr=1.0, decay=0.6.
epoch | Bleu_4 | CIDEr | METEOR | ROUGE_L |
---|---|---|---|---|
106444 | 0.1572 | 0.2445 | 0.2275 | 0.4225 |
120285 | 0.4341 | 1.1887 | 0.3544 | 0.6082 |
140008 | 0.4307 | 1.1691 | 0.3491 | 0.6058 |
161137 | 0.4396 | 1.2197 | 0.3511 | 0.6100 |
180322 | 0.4971 | 1.4785 | 0.3786 | 0.6475 |
200463 | 0.4903 | 1.4322 | 0.3792 | 0.6427 |
221334 | 0.4948 | 1.4457 | 0.3793 | 0.6451 |
240785 | 0.5174 | 1.5341 | 0.3850 | 0.6573 |
260122 | 0.5150 | 1.5426 | 0.3877 | 0.6565 |
280134 | 0.5314 | 1.6125 | 0.3925 | 0.6663 |
300901 | 0.5384 | 1.6313 | 0.3956 | 0.6689 |
320198 | 0.5364 | 1.6359 | 0.3977 | 0.6686 |
340154 | 0.5469 | 1.6830 | 0.4002 | 0.6753 |
360815 | 0.5469 | 1.6758 | 0.4003 | 0.6757 |
380105 | 0.5498 | 1.6942 | 0.4014 | 0.6781 |
400157 | 0.5573 | 1.7235 | 0.4051 | 0.6823 |
420870 | 0.5560 | 1.7224 | 0.4050 | 0.6805 |
440042 | 0.5555 | 1.7293 | 0.4055 | 0.6810 |
461377 | 0.5589 | 1.7350 | 0.4060 | 0.6828 |
480581 | 0.5569 | 1.7328 | 0.4080 | 0.6836 |
500472 | 0.5583 | 1.7315 | 0.4062 | 0.6824 |
521185 | 0.5612 | 1.7414 | 0.4071 | 0.6842 |
540437 | 0.5609 | 1.7391 | 0.4070 | 0.6837 |
560336 | 0.5611 | 1.7437 | 0.4075 | 0.6840 |
580885 | 0.5611 | 1.7469 | 0.4078 | 0.6841 |
600000 | 0.5592 | 1.7408 | 0.4074 | 0.6835 |
From scratch, initlr=1.0, decay=0.6. Postag and char as lexical embedding. Train to 600k steps.
epoch | Bleu_4 | CIDEr | METEOR | ROUGE_L |
---|---|---|---|---|
662 | 0.1006 | 0.0782 | 0.1988 | 0.3861 |
20444 | 0.3686 | 0.9388 | 0.3247 | 0.5674 |
40285 | 0.4090 | 1.0830 | 0.3431 | 0.5937 |
60787 | 0.4251 | 1.1379 | 0.3460 | 0.6005 |
80579 | 0.4212 | 1.1714 | 0.3453 | 0.6002 |
101101 | 0.4387 | 1.1698 | 0.3543 | 0.6085 |
120180 | 0.4804 | 1.3721 | 0.3718 | 0.6345 |
140363 | 0.4522 | 1.2478 | 0.3532 | 0.6149 |
160288 | 0.4805 | 1.3862 | 0.3733 | 0.6315 |
180557 | 0.5082 | 1.5104 | 0.3818 | 0.6523 |
200282 | 0.5153 | 1.5135 | 0.3845 | 0.6544 |
220415 | 0.5132 | 1.5177 | 0.3854 | 0.6556 |
240764 | 0.5206 | 1.5473 | 0.3859 | 0.6576 |
260994 | 0.5221 | 1.5665 | 0.3888 | 0.6597 |
From scratch, initlr=1.0, decay=0.6 to 600k step. Using postag and char as semantic attention. Embedding size is 256, postag embedding size is 32, and char embedding size is 64.
epoch | Bleu_4 | CIDEr | METEOR | ROUGE_L |
---|---|---|---|---|
140392 | 0.4197 | 1.1379 | 0.3433 | 0.5992 |
160688 | 0.4517 | 1.2643 | 0.3633 | 0.6236 |
180498 | 0.4702 | 1.3399 | 0.3670 | 0.6312 |
200574 | 0.4843 | 1.3998 | 0.3731 | 0.6405 |
220920 | 0.4701 | 1.3529 | 0.3666 | 0.6301 |
240485 | 0.4980 | 1.4508 | 0.3800 | 0.6472 |
261336 | 0.5037 | 1.4850 | 0.3820 | 0.6528 |
280991 | 0.5161 | 1.5351 | 0.3888 | 0.6608 |
300618 | 0.5124 | 1.5300 | 0.3872 | 0.6573 |
320690 | 0.5194 | 1.5533 | 0.3886 | 0.6612 |
340050 | 0.5285 | 1.5827 | 0.3934 | 0.6663 |
360974 | 0.5289 | 1.5946 | 0.3936 | 0.6667 |
380127 | 0.5267 | 1.5974 | 0.3949 | 0.6666 |
400226 | 0.5314 | 1.6072 | 0.3942 | 0.6681 |
420000 | 0.5349 | 1.6174 | 0.3966 | 0.6707 |