-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added SF => mardowk preview enhanced needed for the moment
- Loading branch information
1 parent
9b8f4e6
commit 306a926
Showing
10 changed files
with
647 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# SF - Cours 1 | ||
|
||
Rappel des cours de SF: | ||
|
||
- Une formule LTL est une formule $\varphi$ | ||
- soit la négation d'un formule | ||
- soit une formule $\land$ une autre formule | ||
- Le $X (next)$ d'une autre formule | ||
- le Finaly $(F)$ d'une formule | ||
- le Globaly $(G)$ d'une formule | ||
|
||
|
||
### Exercice | ||
|
||
vérifer que: t,i $\models$ F$\varphi$ ssi t,i $\models$ TU$\varphi$ | ||
Définition: Il existe j$\geq$ i, t,i$\models \varphi$ | ||
il existe j$\geq$i, t,j$\models\varphi$ et pour tout $i\leq k <j$ t, k $\models \top$ | ||
|
||
vérifier que: | ||
$G\varphi\models\lnot F(\lnot \varphi)$ | ||
|
||
### Exo 1 | ||
a) G(trainGvoie => F($\lnot$ trainGvoie)) $\lor$ G(trianDvoie=>F($\lnot$ trainDvoie)) | ||
A) G(trainDvoie $\lor$ trainGvoie => F($\lnot$trianDvoie $\land$ $\lnot$trianGvoie)) | ||
|
||
b) GF(trainGvoie $\lor$ trianDvoie) | ||
|
||
|
||
c) G(trainGvoie $\land$ trainD => ($\lnot$trainDvoieU$\lnot$trianGvoie)) | ||
|
||
### Exo 4 | ||
a) | ||
1) vrai | ||
2) vrai | ||
3) faux | ||
4) vrai | ||
5) vrai | ||
|
||
|
||
### Exercice | ||
|
||
a) S(EXp): {[1:3], 5, 6} | ||
b) S(AXp): {3, 6} | ||
c) S(EFp): {TOUS} | ||
d) S(AFp): {TOUS !{1,4,8}} | ||
e) S(EqUr): {2, 3, 4, 5, 6} | ||
f) S(AqUr): {2, 3, 4, 5, 6} |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Réseaux de petri coloré | ||
graphe bi-partie, graphe à deux type de noeuds/arcs | ||
|
||
### Rapels | ||
réseau petri = quadruplet <P, T, W-, W+> | ||
|
||
Exercice durant cours. | ||
```mermaid | ||
graph TB | ||
0(a+b+c+e)-->1(b+c+d) | ||
0-->2(a+c+f+g) | ||
1-->3(b+c+i) | ||
2-->4(a+f+h) | ||
2-->5(a+c+e+g+i) | ||
4-->6(a+e+h+j) | ||
5-->6 | ||
5-->7(c+d+g+i) | ||
6-->8(d+h+j) | ||
7-->9(c+g+i+j) | ||
7-->8 | ||
8-->10(h+i+j) | ||
9-->10 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# Cours 3 | ||
|
||
### diner philosophes | ||
|
||
0: <1 + 2, $\emptyset$, $\emptyset$, 1 + 2> | ||
1: <1, 2, $\emptyset$, 1> | ||
2: <1, $\emptyset$, 2, $\emptyset$> | ||
3: <$\emptyset$, 1 + 2, $\emptyset$, $\emptyset$> | ||
4: <2, 1, $\emptyset$, 2> | ||
|
||
Interblocage possible. | ||
|
||
**Q4:** pour résoudre le problème, prendre les 2 fourchettes en même temps. | ||
|
||
**Q5:** | ||
Prise des 2 fourchettes en même temps | ||
0: <1 + 2, $\emptyset$, 1 + 2> | ||
1: <2, 1, $\emptyset$> | ||
2: <1, 2, $\emptyset$> | ||
|
||
|
||
```mermaid | ||
graph LR | ||
0((pense))-->|p|1[prendre] | ||
1-->|p,f|2((Mange)) | ||
2-->|p,f|3[rendre] | ||
3-->|p|0 | ||
3-->|f + f++1|4((Fourchettes)) | ||
4-->|f + f++1|1 | ||
``` | ||
|
||
### Problème du train et des segments | ||
|
||
```mermaid | ||
graph TB | ||
1((Libre))-->|s++1 + s++2|0[Passer] | ||
0-->|s++1, t|2((Occupé)) | ||
2-->|s, t|0 | ||
0-->|s + s++2|1 | ||
``` | ||
|
||
Etat du système: Couple <numtrain, num section | ||
|
||
0: < <1,1> + <4,2>, <2> + <3> + <5>> | ||
1: < <2,1> + <4,2>, <1> + <3> + <5>> | ||
2: < <2,1> + <5,2>, <2> + <3> + <4>> | ||
3: < <3,1> + <5,2>, <1> + <2> + <4>> | ||
... | ||
|
||
**Q2: propriétées** | ||
P1: le nombre de trains restent constants: Si toujours 2 trains dans l'état `occupé` alors toujours 2 trains dans le système. on ne résone pas sur les arcs, mais sur le graph de marquage. | ||
en pertry net: | ||
`query node (card(EtatSysteme) != 2)` | ||
|
||
P2: On a jamais 2 fois le même S dans les jetons. | ||
en petry net: | ||
`query node (card(EtatSysteme:(Field[0] == 1)) > 1 ...)` | ||
|
||
|
||
### Dépliage réseau de petri coloré | ||
|
||
```mermaid | ||
graph TB | ||
0((p1_1))-->8[t1_x11_x21] | ||
1((p1_2))-->9[t1_x12_x22] | ||
2((p2_1))-->8 | ||
3((p2_2))-->9 | ||
4((p3_1)) | ||
5((p3_2)) | ||
6((p3_3)) | ||
7((p3_4)) | ||
0-->10[t1_x1_x22] | ||
3-->10 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# Structure kripke | ||
|
||
### Exercice | ||
|
||
$M \vDash \Phi$ | ||
|
||
$\Phi = FGc: \bot$ | ||
$\Phi = GFc: \top$ | ||
$\Phi = Ga: \bot$ | ||
$\Phi = aU(G(b\lor c)): \top$ | ||
$\Phi = X\lnot c \to XXc: \top$ | ||
|
||
|
||
### automates de Büchi | ||
|
||
l'alphabet $\omega$ composé de ... est acceptant si il contient un nombre infinie de a, car l'automate lit un `a` pour sortir de 2 et aller dans 1, puis il reste dans 1 en lisant infiniement souvent 1. | ||
|
||
On ne regarde pas les traces qui ne sont pas acceptante, que celle acceptantes. | ||
|
||
**TEST:** | ||
L(A) = ${\omega \in {a, b}^\omega | |w|_b = \omega }$ | ||
|
||
Réponse: $\Sigma^*.b^\omega$ | ||
Une suite finis de a suivi d'une infinité de b ou notre alphabet complet suivit d'une suite infinie de b. | ||
|
||
### Exercice | ||
construire automat buchi pour: p, Xp. | ||
Lit: p | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma_p|e((1)) | ||
e-->|Sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: Xp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma|1((1)) | ||
1-->|Sigma_p|e((2)) | ||
e-->|sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: Fp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma|0 | ||
0-->|Sigma_p|e((1)) | ||
e-->|sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
lit: XXp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma|1((1)) | ||
1-->|Sigma|3((3)) | ||
3-->|Sigma_p|e((2)) | ||
e-->|sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: Gp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma_p|0 | ||
style 0 stroke:green | ||
style 0 stroke:red | ||
``` | ||
|
||
Lit: FGp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma|0 | ||
0-->|Sigma_p|e((2)) | ||
e-->|Sigma_p|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: GFp | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma|0 | ||
0-->|Sigma_p|e((2)) | ||
e-->|Sigma_p|e | ||
e-->|Sigma|0 | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: pUq | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma_p|0 | ||
0-->|Sigma_q|e((1)) | ||
e-->|sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
Lit: pRq | ||
```mermaid | ||
graph LR | ||
0((0))-->|Sigma_q|0 | ||
0-->|Sigma_p|e((1)) | ||
e-->|sigma|e | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
### Exercice | ||
|
||
G(p-->Fq) ==> NNF | ||
|
||
$(false R ( \lnot p \lor (true U q)))$ | ||
|
||
lit aU(Xa) | ||
|
||
```mermaid | ||
graph LR | ||
0-->|a|0((0)) | ||
0-->|Sigma|e((1)) | ||
style 0 stroke:green | ||
style e stroke:red | ||
``` | ||
|
||
```mermaid | ||
graph TB | ||
0["a U (Xa)"]-->1["a, X(a U Xa)"] | ||
0-->2["Xa"] | ||
1-->1 | ||
2-->|Sigma|3[a] | ||
``` | ||
|
||
```mermaid | ||
graph TB | ||
0["false R (!p || ( true U q))"]-->1["!p || true U q, X(!p || true U q)"] | ||
2-->0 | ||
3-->4["true, X(tue U q)"] | ||
1-->3["true U q, X(true U q)"] | ||
3-->5["q"] | ||
1-->2["!p, X(!p || true U q)"] | ||
5-->0 | ||
``` | ||
|
||
```wavedrom {align="center"} | ||
{signal: | ||
[{name: "P1", wave: "x...l...", data: ["P1"]}, | ||
{name: "P2", wave: "0...xxl.", date: ["P2"]}]} | ||
``` |
Oops, something went wrong.