Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chatbot.py #69

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
190 changes: 165 additions & 25 deletions Chatbot.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,169 @@
from openai import OpenAI
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
import os
import asyncio

with st.sidebar:
openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)"
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
# API tokens
HUGGINGFACE_API_TOKEN = "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"

st.title("💬 Chatbot")
st.caption("🚀 A Streamlit chatbot powered by OpenAI")
if not HUGGINGFACE_API_TOKEN:
st.error("HUGGINGFACE_API_TOKEN is not set.")
st.stop()

# Initialize session states
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]

for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])

if prompt := st.chat_input():
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()

client = OpenAI(api_key=openai_api_key)
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
msg = response.choices[0].message.content
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
st.session_state.messages = []

def get_pdf_text(pdf_docs):
"""Extract text from uploaded PDF documents."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text.strip()

def get_text_chunks(text):
"""Split the text into manageable chunks."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100
)
return text_splitter.split_text(text)

def get_vector_store(text_chunks):
"""Create and cache a FAISS vector store."""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")

def get_conversational_chain():
"""Create a conversational chain with custom prompts."""
prompt_template = """
Use the provided context to answer the user's question. If no relevant context is found, respond:
"Sorry, I couldn't find sufficient information in the document."

Context: {context}
Question: {question}

Answer:
"""
model = HuggingFaceHub(
repo_id="google/flan-t5-base",
model_kwargs={"temperature": 0.5, "max_length": 768},
huggingfacehub_api_token=HUGGINGFACE_API_TOKEN
)
prompt = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
return load_qa_chain(llm=model, chain_type="stuff", prompt=prompt)

async def process_user_input(user_question):
"""Process user questions asynchronously."""
try:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question, k=3)

if not docs:
return "Sorry, I couldn't find relevant information in the uploaded documents."

chain = get_conversational_chain()
response = chain.run(input_documents=docs, question=user_question)

st.session_state.messages.append({"role": "user", "content": user_question})
st.session_state.messages.append({"role": "assistant", "content": response})

return response
except Exception as e:
return f"Error processing your query: {str(e)}"

def display_chat():
"""Display the chat history."""
for message in st.session_state.messages:
if message["role"] == "user":
st.chat_message("user").markdown(message["content"])
elif message["role"] == "assistant":
st.chat_message("assistant").markdown(message["content"])

def extract_text(uploaded_files):
"""
Extract text content from uploaded files (PDFs and .txt).
Supports PDF files and plain text files.
"""
text = ""
for file in uploaded_files:
file_type = file.name.split(".")[-1].lower()

if file_type == "pdf":
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() or ""
elif file_type == "txt":
text += file.read().decode("utf-8") # Assuming UTF-8 encoding for text files
else:
st.warning(f"Unsupported file type: {file.name}. Only PDFs and .txt files are supported.")

if not text.strip():
st.error("No text could be extracted from the uploaded files.")
return text.strip()

# Update the main function to use the new extraction method
def main():
"""Main application function."""
st.set_page_config("Multi File Chatbot", page_icon=":robot:", layout="wide")
st.title("PDF Reader Chatbot 🤖")

with st.sidebar:
st.header("📁 File Upload")
uploaded_files = st.file_uploader(
"Upload your PDF or Text files",
accept_multiple_files=True
)

if st.button("Process Files"):
if not uploaded_files:
st.warning("Please upload files first!")
return

with st.spinner("Processing..."):
raw_text = extract_text(uploaded_files)
if not raw_text:
st.error("No text could be extracted from the uploaded files.")
return

text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Processing complete! Vector store created.")

if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()

# Display the chat history
display_chat()

# Chat Input
if prompt := st.chat_input("Ask a question about your uploaded files..."):
if not os.path.exists("faiss_index"):
st.warning("Please process files first!")
return

st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").markdown(prompt)

with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = asyncio.run(process_user_input(prompt))
st.markdown(response)

# Run the main application
if __name__ == "__main__":
main()