-
Notifications
You must be signed in to change notification settings - Fork 115
Customized Feature Column
TF2.0 users generally define model using Keras. tf.keras.layers.Embedding is the native embedding layer in Keras. It can only handle the dense input. For sparse inputs, user often use tf.feature_column.embedding_columns to convert them to dense representation to feed to a DNN.
For ElasticDL, users define the model using keras too. And we have provided elastic.layers.Embedding to interact with the ElasticDL parameter server and partition the embedding table among multiple PS instances. It can replace the native keras embedding layer but can't replace the embedding_column.
In this doc, we are focuing on how to write a customized embedding feature column to interact with the parameter server and how to replace the native feature column with ours.
- Define a new class inheriting from FeatureColumn. What's more, we want to customized a embedding column, so it need inhert from DenseColumn.
- Implement all the abstract methods. Especially we focus on the following two methods:
create_state
Create the variable for this FeatureColumn associated with the DenseFeature layer, such as the embedding variables.
get_dense_tensor
While executing DenseFeature.call, it will iterate all the feature column elements and call get_dense_tensor to get the transformed dense tensor from the feature columns. Let's take native EmbeddingColumn for example, it will callembedding_ops.safe_embedding_lookup_sparse
to get the embedding vectors from the sparse input.
import tensorflow as tf
from tensorflow.python.feature_column import feature_column as fc_old
from tensorflow.python.feature_column import feature_column_v2 as fc_lib
from tensorflow.python.framework import ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_shape
import collections
import numpy as np
def customized_embedding_column(categorical_column,
dimension,
combiner='mean',
initializer=None,
ckpt_to_load_from=None,
tensor_name_in_ckpt=None,
max_norm=None,
trainable=True):
if (dimension is None) or (dimension < 1):
raise ValueError('Invalid dimension {}.'.format(dimension))
if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None):
raise ValueError('Must specify both `ckpt_to_load_from` and '
'`tensor_name_in_ckpt` or none of them.')
if (initializer is not None) and (not callable(initializer)):
raise ValueError('initializer must be callable if specified. '
'Embedding of column_name: {}'.format(
categorical_column.name))
if initializer is None:
initializer = tf.keras.initializers.ones
return CustomizedEmbeddingColumn(
categorical_column=categorical_column,
dimension=dimension,
combiner=combiner,
initializer=initializer,
ckpt_to_load_from=ckpt_to_load_from,
tensor_name_in_ckpt=tensor_name_in_ckpt,
max_norm=max_norm,
trainable=trainable,
extended={})
EmbeddingAndIds = collections.namedtuple(
"EmbeddingAndIds", ["batch_embedding", "batch_ids"]
)
class CustomizedEmbeddingColumn(
fc_lib.DenseColumn,
fc_lib.SequenceDenseColumn,
fc_old._DenseColumn,
fc_old._SequenceDenseColumn,
collections.namedtuple(
'EmbeddingColumn',
('categorical_column', 'dimension', 'combiner', 'initializer',
'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable', 'extended'))):
@property
def _is_v2_column(self):
return (isinstance(self.categorical_column, fc_lib.FeatureColumn) and
self.categorical_column._is_v2_column)
@property
def name(self):
"""See `FeatureColumn` base class."""
return '{}_customized_embedding'.format(self.categorical_column.name)
@property
def parse_example_spec(self):
"""See `FeatureColumn` base class."""
return self.categorical_column.parse_example_spec
@property
def variable_shape(self):
"""See `DenseColumn` base class."""
return tensor_shape.TensorShape([self.dimension])
def create_state(self, state_manager):
"""Creates the embedding lookup variable."""
default_num_buckets = (self.categorical_column.num_buckets
if self._is_v2_column
else self.categorical_column._num_buckets) # pylint: disable=protected-access
num_buckets = getattr(self.categorical_column, 'num_buckets', default_num_buckets)
embedding_shape = (num_buckets, self.dimension)
if 'np_embedding_table' not in self.extended:
self.extended['np_embedding_table'] = np.full(embedding_shape, 10)
self.embedding_and_ids = []
def get_dense_tensor(self, transformation_cache, state_manager):
if isinstance(self.categorical_column, fc_lib.SequenceCategoricalColumn):
raise ValueError(
'In embedding_column: {}. '
'categorical_column must not be of type SequenceCategoricalColumn. '
'Suggested fix A: If you wish to use DenseFeatures, use a '
'non-sequence categorical_column_with_*. '
'Suggested fix B: If you wish to create sequence input, use '
'SequenceFeatures instead of DenseFeatures. '
'Given (type {}): {}'.format(self.name, type(self.categorical_column),
self.categorical_column))
# Get sparse IDs and weights.
sparse_tensors = self.categorical_column.get_sparse_tensors(
transformation_cache, state_manager)
sparse_ids = sparse_tensors.id_tensor
unique_ids, idx = tf.unique(sparse_ids.values)
batch_embedding = tf.py_function(
self.lookup_embedding, inp=[unique_ids], Tout=tf.float32
)
if self.tape:
batch_embedding = self._record_gradients(batch_embedding, unique_ids)
segment_ids = sparse_ids.indices[:, 0]
if segment_ids.dtype != tf.int32:
segment_ids = tf.cast(segment_ids, tf.int32)
if self.combiner == "sum":
batch_embedding = tf.sparse.segment_sum(
batch_embedding, idx, segment_ids
)
elif self.combiner == "mean":
batch_embedding = tf.sparse.segment_mean(
batch_embedding, idx, segment_ids
)
elif self.combiner == "sqrtn":
batch_embedding = tf.sparse.segment_sqrt_n(
batch_embedding, idx, segment_ids
)
return batch_embedding
def lookup_embedding(self, unique_ids):
batch_embedding = []
ids = unique_ids.numpy()
for id in ids:
batch_embedding.append(self.extended['np_embedding_table'][id])
batch_embedding = np.concatenate(batch_embedding, axis=0)
return batch_embedding.reshape((len(unique_ids), self.dimension))
@property
def tape(self):
if 'tape' in self.extended:
return self.extended['tape']
return None
@tape.setter
def tape(self, tape):
self.extended['tape'] = tape
@property
def embedding_and_ids(self):
if 'embedding_and_ids' in self.extended:
return self.extended['embedding_and_ids']
return None
@embedding_and_ids.setter
def embedding_and_ids(self, embedding_and_ids):
self.extended['embedding_and_ids'] = embedding_and_ids
def _record_gradients(self, batch_embedding, ids):
self.tape.watch(batch_embedding)
self.embedding_and_ids.append(
EmbeddingAndIds(batch_embedding, ids)
)
return batch_embedding
def reset(self):
self.embedding_and_ids = []
self.tape = None
def set_tape_to_customized_embedding_columns(model, tape):
for layer in model.layers:
if isinstance(layer, tf.keras.layers.DenseFeatures):
for column in layer._feature_columns:
if isinstance(column, CustomizedEmbeddingColumn):
column.tape = tape
def reset_customized_embedding_columns(model):
for layer in model.layers:
if isinstance(layer, tf.keras.layers.DenseFeatures):
for column in layer._feature_columns:
if isinstance(column, CustomizedEmbeddingColumn):
column.reset()
def get_trainable_items(model):
bets = []
for layer in model.layers:
if isinstance(layer, tf.keras.layers.DenseFeatures):
for column in layer._feature_columns:
if isinstance(column, CustomizedEmbeddingColumn):
bets.extend(
[
batch_embedding for (batch_embedding, _) in column.embedding_and_ids
]
)
return list(model.trainable_variables) + bets
The following sample code is about how to replace embedding_column with customized embedding column.
def replace_embedding_column_with_customized_in_feature_layer(feature_layer):
new_feature_columns = []
for column in feature_layer._feature_columns:
if isinstance(column, fc_lib.EmbeddingColumn):
new_column = customized_fc.customized_embedding_column(
column.categorical_column,
dimension=column.dimension)
new_feature_columns.append(new_column)
else:
new_feature_columns.append(column)
feature_layer._feature_columns = new_feature_columns
return feature_layer
The following code snippets show that how to assign trained weights to embedding_column. Using this method, We can train embedding_columns using customized lookup operator and save model using tensorflow native embedding_column for tf-serving.
Firstly, we define a Keras model with two embedding_columns.
import time
import numpy as np
import tensorflow as tf
def get_feature_columns():
age = tf.feature_column.numeric_column("age", dtype=tf.int64)
edu_embedding = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_hash_bucket(
'education', hash_bucket_size=4),
4
)
edu_embedding_1 = tf.feature_column.embedding_column(
tf.feature_column.categorical_column_with_hash_bucket(
'education_1', hash_bucket_size=4),
1
)
return [age, edu_embedding, edu_embedding_1]
def custom_model(feature_columns):
input_layers = {}
input_layers['age'] = tf.keras.layers.Input(name='age', shape=(1,))
input_layers['education'] = tf.keras.layers.Input(name='education', shape=(1,), dtype=tf.string)
input_layers['education_1'] = tf.keras.layers.Input(name='education_1', shape=(1,), dtype=tf.string)
dense_feature = tf.keras.layers.DenseFeatures(feature_columns=feat_cols)(input_layers)
return tf.keras.models.Model(inputs=input_layers, outputs=dense_feature)
feat_cols = get_feature_columns()
model = custom_model(feat_cols)
output = model.call(
{
'age':tf.constant([[10],[16]]),
'education':tf.constant([['Bachelors'],['Master']]),
'education_1':tf.constant([['Bachelors'],['Master']])
}
)
print(output)
Next, we will mock trained weights and assign the weights to embedding_columns in the model.
import numpy as np
from tensorflow.python.feature_column.feature_column_v2 import EmbeddingColumn
def mock_embedding_column_weights(feature_columns, dense_feature_name):
embedding_column_weights = {}
for fc in feature_columns:
if isinstance(fc, EmbeddingColumn):
variable_name = "/".join([dense_feature_name, fc.name, "embedding_weights:0"])
weight_shape = (fc.categorical_column.num_buckets, fc.dimension)
embedding_column_weights[variable_name] = np.ones(weight_shape)
return embedding_column_weights
model_feature_columns = None
for layer in model.layers:
if isinstance(layer, tf.keras.layers.DenseFeatures):
model_feature_columns = list(layer._feature_columns)
embedding_column_weights = mock_embedding_column_weights(
model_feature_columns, layer.name
)
for weight in model.trainable_weights:
if weight.name in embedding_column_weights:
weight.assign(embedding_column_weights[weight.name])
output = model.call(
{
'age':tf.constant([[10],[16]]),
'education':tf.constant([['Bachelors'],['Master']]),
'education_1':tf.constant([['Bachelors'],['Master']]),
}
)
print(output)