Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

JP-3583: Long integrations truncation in ramp fitting #251

Merged
merged 6 commits into from
Mar 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,13 @@ ramp_fitting
Bug Fixes
---------

ramp_fitting
~~~~~~~~~~~~

- Changed the data type of three variables that are used in measuring
the jump free segments of integrations. The variables were uint8 and
they would yield wrong results for integrations with more than 256
groups. [#251]
Other
-----

Expand Down
6 changes: 3 additions & 3 deletions src/stcal/ramp_fitting/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,10 +520,10 @@ def calc_slope_vars(ramp_data, rn_sect, gain_sect, gdq_sect, group_time, max_seg
gdq_2d_nan[np.bitwise_and(gdq_2d, ramp_data.flags_saturated).astype(bool)] = np.nan

# Get lengths of semiramps for all pix [number_of_semiramps, number_of_pix]
segs = np.zeros_like(gdq_2d)
segs = np.zeros_like(gdq_2d).astype(np.uint16)

# Counter of semiramp for each pixel
sr_index = np.zeros(npix, dtype=np.uint8)
sr_index = np.zeros(npix, dtype=np.uint16)
pix_not_done = np.ones(npix, dtype=bool) # initialize to True

i_read = 0
Expand Down Expand Up @@ -558,7 +558,7 @@ def calc_slope_vars(ramp_data, rn_sect, gain_sect, gdq_sect, group_time, max_seg

i_read += 1

segs = segs.astype(np.uint8)
segs = segs.astype(np.uint16)
segs_beg = segs[:max_seg, :] # the leading nonzero lengths

# Create reshaped version [ segs, y, x ] to simplify computation
Expand Down
60 changes: 60 additions & 0 deletions tests/test_ramp_fitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,23 @@
# -----------------------------------------------------------------------------
# Test Suite

def test_long_integration():
nints, nrows, ncols = 1, 1, 1
rnoise_val, gain_val = 0.1, 40.0
nframes, gtime, ftime = 1, 3, 3
tm = (nframes, gtime, ftime)
num_grps1 = 301
num_grps2 = 20
ramp_data, rnoise_array, gain_array = create_test_2seg_obs(rnoise_val, nints, num_grps1, num_grps2, ncols,
nrows, tm, rate=0, Poisson=True, grptime=gtime,
gain=gain_val, bias=0)
ramp_data.data[0, 291:, 0, 0] = 320 * 3
# Run ramp fit on RampData
buffsize, save_opt, algo, wt, ncores = 512, True, "OLS", "optimal", "none"
slopes, cube, optional, gls_dummy = ramp_fit_data(
ramp_data, buffsize, save_opt, rnoise_array, gain_array, algo, wt, ncores, dqflags)
np.testing.assert_almost_equal(slopes[0], .65, 2)


def base_neg_med_rates_single_integration():
"""
Expand Down Expand Up @@ -1506,6 +1523,49 @@

return ramp_data, rnoise, gain

def create_test_2seg_obs(readnoise, num_ints, num_grps1, num_grps2, ncols,
nrows, tm, rate=0, Poisson=True, grptime=2.77,
gain=4.0, bias=3000, sat_group=0, sat_value=100000):
nframes, gtime, dtime = tm
rng = np.random.default_rng()
outcube1a = np.zeros(shape=(num_ints, num_grps1 + num_grps2, ncols, nrows), dtype=np.float32)
outcube1 = np.random.normal(loc=0.0, scale=readnoise / np.sqrt(2),
size=(num_ints, num_grps1 + num_grps2 + 1, ncols, ncols))
if rate > 0:
pvalues = grptime * rate + (rng.poisson(lam=gain * rate * grptime,

Check warning on line 1535 in tests/test_ramp_fitting.py

View check run for this annotation

Codecov / codecov/patch

tests/test_ramp_fitting.py#L1535

Added line #L1535 was not covered by tests
size=(num_ints, num_grps1 + num_grps2, ncols,
nrows)) - gain * rate * grptime) / gain
for intg in range(num_ints):
outcube1a[intg, 0, :, :] = outcube1[intg, 0, :, :]
for grp in range(1, num_grps1 + num_grps2):
outcube1a[intg, grp, :, :] = outcube1[intg, grp, :, :] + np.sum(pvalues[intg, 0:grp, :, :], axis=0)
outcube1f = outcube1a

Check warning on line 1542 in tests/test_ramp_fitting.py

View check run for this annotation

Codecov / codecov/patch

tests/test_ramp_fitting.py#L1538-L1542

Added lines #L1538 - L1542 were not covered by tests
else:
outcube1f = outcube1
outdata = outcube1f + bias
# print("cube mean values", np.mean(outdata[0,:,:,:], axis=(2, 3)))
outgdq = np.zeros_like(outdata, dtype=np.uint8)
outgdq[:, 0, :, :] = 1
outgdq[:, -1, :, :] = 1
if num_grps2 > 0:
outgdq[:, num_grps1, :, :] = 4
if sat_group > 0:
outgdq[:, sat_group:, :, :] = 2
outdata[:, sat_group:, :, :] = sat_value

Check warning on line 1554 in tests/test_ramp_fitting.py

View check run for this annotation

Codecov / codecov/patch

tests/test_ramp_fitting.py#L1553-L1554

Added lines #L1553 - L1554 were not covered by tests
pixdq = np.zeros(shape=(ncols, nrows), dtype=np.int32)
err = np.ones(shape=(num_ints, num_grps1 + num_grps2 + 1, nrows, ncols), dtype=np.float32)
ramp_data = RampData()
dark_current = np.zeros((nrows, ncols))
ramp_data.set_arrays(
data=outdata, err=err, groupdq=outgdq, pixeldq=pixdq, average_dark_current=dark_current)
ramp_data.set_meta(
name="MIRI", frame_time=dtime, group_time=gtime, groupgap=0,
nframes=nframes, drop_frames1=None)
ramp_data.set_dqflags(dqflags)
readnoise_array = np.ones_like(pixdq) * readnoise
gain_array = np.ones_like(pixdq) * gain
return ramp_data, readnoise_array, gain_array


# -----------------------------------------------------------------------------

Expand Down
Loading