-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
use
scikit-image
for ellipse functions
rename toxenvs formatting don't skip `scikit-image` broader except base add change log entry use `scikit-image` and `shapely` functions to construct ellipses, and a modified Welzl's algorithm to find smallest enclosing circles add rules fix requirement use Shapely polygon construction and minimum rotated rectangle function to get ellipse parameters fix for Python<=3.8 send points as array instead of as tuple remove flip from `opencv` code match `skimage` angle results to `opencv` test oblong shape for ellipse add more attribution rename tests vectorized and documentation remove usage of `opencv-python` entirely update change log entry fixes remove usage of shapely pin scikit-image replace other usages of cv.ellipse convert to tuples to fix equality comparison resolve negative angle issue remove extranneous function definition avoid partial index tuple expansion to satisfy Python 3.10 test syntax errors adjust expected test results to match skimage ellipses
- Loading branch information
1 parent
4e6df94
commit ccb4c26
Showing
11 changed files
with
109,843 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
import random | ||
from typing import Union, Tuple, List | ||
|
||
import numpy | ||
|
||
RELATIVE_TOLERANCE = 1 + 1e-14 | ||
|
||
|
||
class Circle: | ||
|
||
def __init__(self, center: Tuple[float, float], radius: float): | ||
self.center = numpy.array(center) | ||
self.radius = radius | ||
|
||
@classmethod | ||
def from_points(cls, points: List[Tuple[float, float]]) -> 'Circle': | ||
""" | ||
Returns the smallest circle that encloses all the given points. | ||
from https://www.nayuki.io/page/smallest-enclosing-circle | ||
If 0 points are given, `None` is returned. | ||
If 1 point is given, a circle of radius 0 is returned. | ||
If 2 points are given, a circle with diameter between them is returned. | ||
If 3 or more points are given, uses the algorithm described in this PDF: | ||
https://www.cise.ufl.edu/~sitharam/COURSES/CG/kreveldnbhd.pdf | ||
:param points: A sequence of pairs of floats or ints, e.g. [(0,5), (3.1,-2.7)]. | ||
:return: the smallest circle that encloses all points, to within the relative tolerance defined by the class | ||
""" | ||
|
||
if len(points) == 0: | ||
return None | ||
elif len(points) == 1: | ||
return cls(center=points[0], radius=0.0) | ||
elif len(points) == 2: | ||
points = numpy.array(points) | ||
center = numpy.mean(points, axis=0) | ||
radius = numpy.max(numpy.hypot(*(center - points).T)) | ||
|
||
return cls(center=center, radius=radius) | ||
else: | ||
# Convert to float and randomize order | ||
shuffled_points = [(float(point[0]), float(point[1])) for point in points] | ||
random.shuffle(shuffled_points) | ||
|
||
# Progressively add points to circle or recompute circle | ||
circle = None | ||
for (index, point) in enumerate(shuffled_points): | ||
if circle is None or point not in circle: | ||
circle = _expand_circle_from_one_point(point, shuffled_points[:index + 1]) | ||
|
||
return circle | ||
|
||
def __getitem__(self, index: int) -> Union[tuple, float]: | ||
if index == 0: | ||
return tuple(self.center) | ||
elif index == 1: | ||
return self.radius | ||
else: | ||
raise IndexError(f'{self.__class__.__name__} index out of range') | ||
|
||
def __add__(self, delta: Tuple[float, float]) -> 'Circle': | ||
if isinstance(delta, float): | ||
delta = (delta, delta) | ||
return self.__class__(center=self.center + numpy.array(delta), radius=self.radius) | ||
|
||
def __mul__(self, factor: float) -> 'Circle': | ||
return self.__class__(center=self.center, radius=self.radius + factor) | ||
|
||
def __contains__(self, point: Tuple[float, float]) -> bool: | ||
return numpy.hypot(*(numpy.array(point) - self.center)) <= self.radius * RELATIVE_TOLERANCE | ||
|
||
def __eq__(self, other: 'Circle') -> bool: | ||
return numpy.all(self.center == other.center) and self.radius == other.radius | ||
|
||
def almost_equals(self, other: 'Circle', delta: float = None) -> bool: | ||
if delta is None: | ||
delta = RELATIVE_TOLERANCE | ||
return numpy.allclose(self.center, other.center, atol=delta) and \ | ||
numpy.allclose(self.radius, other.radius, atol=delta) | ||
|
||
def __repr__(self) -> str: | ||
return f'{self.__class__.__name__}({self.center}, {self.radius})' | ||
|
||
|
||
def _expand_circle_from_one_point( | ||
known_boundary_point: Tuple[float, float], | ||
points: List[Tuple[float, float]], | ||
) -> Circle: | ||
""" | ||
iteratively expand a circle from one known boundary point to enclose the given set of points | ||
from https://www.nayuki.io/page/smallest-enclosing-circle | ||
""" | ||
|
||
circle = Circle(known_boundary_point, 0.0) | ||
for point_index, point in enumerate(points): | ||
if point not in circle: | ||
if circle.radius == 0.0: | ||
circle = Circle.from_points([known_boundary_point, point]) | ||
else: | ||
circle = _expand_circle_from_two_points(known_boundary_point, point, points[: point_index + 1]) | ||
return circle | ||
|
||
|
||
def _expand_circle_from_two_points( | ||
known_boundary_point_a: Tuple[float, float], | ||
known_boundary_point_b: Tuple[float, float], | ||
points: List[Tuple[float, float]], | ||
) -> Circle: | ||
""" | ||
iteratively expand a circle from two known boundary points to enclose the given set of points | ||
from https://www.nayuki.io/page/smallest-enclosing-circle | ||
""" | ||
|
||
known_boundary_points = numpy.array([known_boundary_point_a, known_boundary_point_b]) | ||
|
||
circle = Circle.from_points(known_boundary_points) | ||
left = None | ||
right = None | ||
|
||
# For each point not in the two-point circle | ||
for point in points: | ||
if point in circle: | ||
continue | ||
|
||
# Form a circumcircle and classify it on left or right side | ||
circumcircle_cross_product = _triangle_cross_product((*known_boundary_points, point)) | ||
circumcircle = circumcircle_from_points(known_boundary_point_a, known_boundary_point_b, point) | ||
circumcenter_cross_product = _triangle_cross_product((*known_boundary_points, circumcircle.center)) | ||
if circumcircle is None: | ||
continue | ||
elif circumcircle_cross_product > 0.0 and \ | ||
( | ||
left is None or | ||
circumcenter_cross_product > _triangle_cross_product((*known_boundary_points, left.center)) | ||
): | ||
left = circumcircle | ||
elif circumcircle_cross_product < 0.0 and \ | ||
( | ||
right is None or | ||
circumcenter_cross_product < _triangle_cross_product((*known_boundary_points, right.center)) | ||
): | ||
right = circumcircle | ||
|
||
# Select which circle to return | ||
if left is None and right is None: | ||
return circle | ||
elif left is None: | ||
return right | ||
elif right is None: | ||
return left | ||
else: | ||
return left if (left.radius <= right.radius) else right | ||
|
||
|
||
def circumcircle_from_points( | ||
a: Tuple[float, float], | ||
b: Tuple[float, float], | ||
c: Tuple[float, float], | ||
) -> Circle: | ||
""" | ||
build a circumcircle from three points, using the algorithm from https://en.wikipedia.org/wiki/Circumscribed_circle | ||
from https://www.nayuki.io/page/smallest-enclosing-circle | ||
""" | ||
|
||
points = numpy.array([a, b, c]) | ||
incenter = ((numpy.min(points, axis=0) + numpy.max(points, axis=0)) / 2) | ||
|
||
relative_points = points - incenter | ||
a, b, c = relative_points | ||
|
||
intermediate = 2 * (a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0] * (a[1] - b[1])) | ||
if intermediate == 0: | ||
return None | ||
|
||
relative_circumcenter = numpy.array([ | ||
(a[0] ** 2 + a[1] ** 2) * (b[1] - c[1]) + | ||
(b[0] ** 2 + b[1] ** 2) * (c[1] - a[1]) + | ||
(c[0] ** 2 + c[1] ** 2) * (a[1] - b[1]), | ||
(a[0] ** 2 + a[1] ** 2) * (c[0] - b[0]) + | ||
(b[0] ** 2 + b[1] ** 2) * (a[0] - c[0]) + | ||
(c[0] ** 2 + c[1] ** 2) * (b[0] - a[0]), | ||
]) / intermediate | ||
|
||
return Circle( | ||
center=relative_circumcenter + incenter, | ||
radius=numpy.max(numpy.hypot(*(relative_circumcenter - relative_points).T)), | ||
) | ||
|
||
|
||
def _triangle_cross_product(triangle: Tuple[Tuple[float, float], Tuple[float, float], Tuple[float, float]]) -> float: | ||
""" | ||
calculates twice the signed area of the provided triangle | ||
from https://www.nayuki.io/page/smallest-enclosing-circle | ||
:param triangle: three points defining a triangle | ||
:return: twice the signed area of triangle | ||
""" | ||
|
||
return (triangle[1][0] - triangle[0][0]) \ | ||
* (triangle[2][1] - triangle[0][1]) \ | ||
- (triangle[1][1] - triangle[0][1]) \ | ||
* (triangle[2][0] - triangle[0][0]) |
Oops, something went wrong.