Skip to content

Commit

Permalink
modified some variable names
Browse files Browse the repository at this point in the history
  • Loading branch information
giozu committed Aug 26, 2024
1 parent 6ac467c commit f4f37a4
Show file tree
Hide file tree
Showing 155 changed files with 354 additions and 405 deletions.
2 changes: 1 addition & 1 deletion docs/_set_variables_functions_8h_source.html
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160; std::vector&lt;std::string&gt; names =</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>&#160; {</div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span>&#160; <span class="stringliteral">&quot;iGrainGrowth&quot;</span>,</div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160; <span class="stringliteral">&quot;iFGDiffusionCoefficient&quot;</span>,</div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160; <span class="stringliteral">&quot;iFissionGasDiffusivity&quot;</span>,</div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160; <span class="stringliteral">&quot;iDiffusionSolver&quot;</span>,</div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>&#160; <span class="stringliteral">&quot;iIntraGranularBubbleBehavior&quot;</span>, </div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160; <span class="stringliteral">&quot;iResolutionRate&quot;</span>,</div>
Expand Down
49 changes: 10 additions & 39 deletions docs/class_simulation.html
Original file line number Diff line number Diff line change
Expand Up @@ -132,8 +132,9 @@
void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_simulation.html#a3626f4a40f3d4a9d5d5a585f5232ad54">GrainBoundaryMicroCracking</a> ()</td></tr>
<tr class="memdesc:a3626f4a40f3d4a9d5d5a585f5232ad54"><td class="mdescLeft">&#160;</td><td class="mdescRight">GrainBoundaryMicroCracking is method of simulation which executes the SCIANTIX simulation for the grain-boundary micro-cracking induced by a temperature difference. This method calls the related model "Grain-boundary micro-cracking", takes the model parameters and solve the model ODEs. <br /></td></tr>
<tr class="separator:a3626f4a40f3d4a9d5d5a585f5232ad54"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:aadd3703971286c4d30da4437b806be1b"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_simulation.html#aadd3703971286c4d30da4437b806be1b">GrainBoundaryVenting</a> ()</td></tr>
<tr class="memdesc:aadd3703971286c4d30da4437b806be1b"><td class="mdescLeft">&#160;</td><td class="mdescRight">Handles the venting processes at grain boundaries, potentially releasing gases. <a href="class_simulation.html#aadd3703971286c4d30da4437b806be1b">More...</a><br /></td></tr>
<tr class="memitem:aadd3703971286c4d30da4437b806be1b"><td class="memItemLeft" align="right" valign="top"><a id="aadd3703971286c4d30da4437b806be1b"></a>
void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_simulation.html#aadd3703971286c4d30da4437b806be1b">GrainBoundaryVenting</a> ()</td></tr>
<tr class="memdesc:aadd3703971286c4d30da4437b806be1b"><td class="mdescLeft">&#160;</td><td class="mdescRight">Handles the venting processes at grain boundaries, potentially releasing gases. <br /></td></tr>
<tr class="separator:aadd3703971286c4d30da4437b806be1b"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:ae7fc78f09c415811f743f573b4211c76"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_simulation.html#ae7fc78f09c415811f743f573b4211c76">HighBurnupStructureFormation</a> ()</td></tr>
<tr class="memdesc:ae7fc78f09c415811f743f573b4211c76"><td class="mdescLeft">&#160;</td><td class="mdescRight">Simulates the formation of high burnup structures within the nuclear fuel. <a href="class_simulation.html#ae7fc78f09c415811f743f573b4211c76">More...</a><br /></td></tr>
Expand Down Expand Up @@ -455,27 +456,6 @@ <h2 class="memtitle"><span class="permalink"><a href="#aa8c2857bcccb709e339f6e67
</dd>
</dl>

</div>
</div>
<a id="aadd3703971286c4d30da4437b806be1b"></a>
<h2 class="memtitle"><span class="permalink"><a href="#aadd3703971286c4d30da4437b806be1b">&#9670;&nbsp;</a></span>GrainBoundaryVenting()</h2>

<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">void Simulation::GrainBoundaryVenting </td>
<td>(</td>
<td class="paramname"></td><td>)</td>
<td></td>
</tr>
</table>
</div><div class="memdoc">

<p>Handles the venting processes at grain boundaries, potentially releasing gases. </p>
<p>Not considered.</p>
<p>Release mechanisms quantified via the vented fraction</p>

</div>
</div>
<a id="ae68a88beec39c560b2bcb80c14d2f238"></a>
Expand Down Expand Up @@ -645,15 +625,6 @@ <h2 class="memtitle"><span class="permalink"><a href="#a45a0d6c1d3712be2c126360d
<dd>
G. Zullo </dd></dl>
<h2><a class="anchor" id="autotoc_md34"></a>
iIntraGranularBubbleBehavior == 0</h2>
<p>This case assumes constant trial values for the intragranular bubble number density and radius. </p><dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[out]</td><td class="paramname">intragranular_bubble_concentration</td><td></td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">intragranular_bubble_radius</td><td></td></tr>
</table>
</dd>
</dl>
<h2><a class="anchor" id="autotoc_md35"></a>
iIntraGranularBubbleBehavior == 1</h2>
<p>The evolution of small intra-granular bubbles in fuel grains is controlled by bubble nucleation, gas atom trapping, and irradiation-induced gas atom re-solution back in the lattice. </p><dl class="section see"><dt>See also</dt><dd>Description of the model in <a href="../../references/pdf_link/Pizzocri_et_al_2018.pdf" target="_blank">Pizzocri et al., JNM, 502 (2018) 323-330</a>. </dd></dl>
<dl class="params"><dt>Parameters</dt><dd>
Expand All @@ -665,7 +636,7 @@ <h2><a class="anchor" id="autotoc_md35"></a>
</table>
</dd>
</dl>
<h2><a class="anchor" id="autotoc_md36"></a>
<h2><a class="anchor" id="autotoc_md35"></a>
iIntraGranularBubbleBehavior == 2</h2>
<p>The evolution of intragranular bubbles is modelled by means of temperature-driven correlations. </p><dl class="section see"><dt>See also</dt><dd>Description of the model in <a href="../../references/pdf_link/White_and_Tucker_1983.pdf" target="_blank">White, Tucker, Journal of Nuclear Materials, 118 (1983), 1-38</a>.</dd></dl>
<dl class="params"><dt>Parameters</dt><dd>
Expand Down Expand Up @@ -710,23 +681,23 @@ <h2 class="memtitle"><span class="permalink"><a href="#ac9119d3efd56ba6c05c9d365
<p>iStoichiometryDeviation = 0 neglects the stoichiometry deviation of the fuel.</p>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a semi-empirical model. Carter and Lay, J. Nucl. Mater., 36:77–86, 1970. The oxidation rate follows: dx/dt = alpha*(S/V)*[x_eq - x]*(Ph2o^0.5)</p>
<p>alpha is the surface exchange coefficient for unirradiated UO2 oxidation obtained by experimments. It is expressed as alpha = A exp(−Q/T). S/V = 3/a (1/m), surface-to-volume ratio of the fuel sample x_eq : equilbrium stoichiometry deviation (evaluated by UO2Thermochemistry model)</p>
<h3><a class="anchor" id="autotoc_md37"></a>
<h3><a class="anchor" id="autotoc_md36"></a>
iStoichiometryDeviation = 1</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
<li>Temperature range: 1273-1923 Cox et al. NUREG/CP-0078 (1986), U.S. NRC</li>
</ul>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a semi-empirical model. Carter and Lay, J. Nucl. Mater., 36:77–86, 1970. The oxidation rate follows: dx/dt = alpha*(S/V)*[x_eq - x]*(Ph2o^0.5)</p>
<p>alpha is the surface exchange coefficient for unirradiated UO2 oxidation obtained by experimments. It is expressed as alpha = A exp(−Q/T). S/V = 3/a (1/m), surface-to-volume ratio of the fuel sample x_eq : equilbrium stoichiometry deviation (evaluated by UO2Thermochemistry model)</p>
<h3><a class="anchor" id="autotoc_md38"></a>
<h3><a class="anchor" id="autotoc_md37"></a>
iStoichiometryDeviation = 2</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
<li>Temperature range: 1158-2108 Bittel et al., J. Amer. Ceram. Soc., 52:446–451, 1969, reanalysed by Cox et al. NUREG/CP-0078 (1986), U.S. NRC</li>
</ul>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a semi-empirical model. Carter and Lay, J. Nucl. Mater., 36:77–86, 1970. The oxidation rate follows: dx/dt = alpha*(S/V)*[x_eq - x]*(Ph2o^0.5)</p>
<p>alpha is the surface exchange coefficient for unirradiated UO2 oxidation obtained by experimments. It is expressed as alpha = A exp(−Q/T). S/V = 3/a (1/m), surface-to-volume ratio of the fuel sample x_eq : equilbrium stoichiometry deviation (evaluated by UO2Thermochemistry model)</p>
<h3><a class="anchor" id="autotoc_md39"></a>
<h3><a class="anchor" id="autotoc_md38"></a>
iStoichiometryDeviation = 3</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
Expand All @@ -735,21 +706,21 @@ <h3><a class="anchor" id="autotoc_md39"></a>
</ul>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a semi-empirical model. Carter and Lay, J. Nucl. Mater., 36:77–86, 1970. The oxidation rate follows: dx/dt = alpha*(S/V)*[x_eq - x]*(Ph2o^0.5)</p>
<p>alpha is the surface exchange coefficient for unirradiated UO2 oxidation obtained by experiments. It is expressed as alpha = A exp(−Q/T). S/V = 3/a (1/m), surface-to-volume ratio of the fuel sample x_eq : equilbrium stoichiometry deviation (evaluated by UO2Thermochemistry model)</p>
<h3><a class="anchor" id="autotoc_md40"></a>
<h3><a class="anchor" id="autotoc_md39"></a>
iStoichiometryDeviation = 4</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
<li>Temperature range: 1073-1473 Imamura and. Une, JNM, 247:131–137, 1997.</li>
</ul>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a mechanistic Langmuir-based approach Massih, A. R. "UO2 fuel oxidation and fission gas release." Swedish Radiation Safety Authority report, Report 2018 (2018): 25. The oxidation rate follows: dx/dt = theta/tau (1 - sqrt(Po2(x)/Po2)) In SCIANTIX, the ODE is rewritten as: dx / dt = K (1 - beta * exp(alpha * x))</p>
<h3><a class="anchor" id="autotoc_md41"></a>
<h3><a class="anchor" id="autotoc_md40"></a>
iStoichiometryDeviation = 5</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
<li>Temperature range: 1073-1673 K</li>
</ul>
<p>The model for fuel oxidation and stoichimetry deviation evolution is described with a mechanistic Langmuir-based approach Massih, A. R. "UO2 fuel oxidation and fission gas release." Swedish Radiation Safety Authority report, Report 2018 (2018): 25. The oxidation rate follows: dx/dt = theta/tau (1 - sqrt(Po2(x)/Po2)) In SCIANTIX, the ODE is rewritten as: dx / dt = K (1 - beta * exp(alpha * x))</p>
<h3><a class="anchor" id="autotoc_md42"></a>
<h3><a class="anchor" id="autotoc_md41"></a>
iStoichiometryDeviation = 5</h3>
<p>Range of utilization:</p><ul>
<li>Pure steam</li>
Expand Down
18 changes: 9 additions & 9 deletions docs/class_system.html
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@
<tr class="memdesc:ae8fc2e89ce30eeeb092514e9de320b48"><td class="mdescLeft">&#160;</td><td class="mdescRight">Retrieves the helium diffusivity within the matrix. <a href="class_system.html#ae8fc2e89ce30eeeb092514e9de320b48">More...</a><br /></td></tr>
<tr class="separator:ae8fc2e89ce30eeeb092514e9de320b48"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:a7c475aa8dedf9734bf642573323193e1"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_system.html#a7c475aa8dedf9734bf642573323193e1">setFissionGasDiffusivity</a> (int input_value, <a class="el" href="class_sciantix_array.html">SciantixArray</a>&lt; <a class="el" href="class_sciantix_variable.html">SciantixVariable</a> &gt; &amp;sciantix_variable, <a class="el" href="class_sciantix_array.html">SciantixArray</a>&lt; <a class="el" href="class_sciantix_variable.html">SciantixVariable</a> &gt; &amp;history_variable, <a class="el" href="class_sciantix_array.html">SciantixArray</a>&lt; <a class="el" href="class_input_variable.html">InputVariable</a> &gt; &amp;scaling_factors)</td></tr>
<tr class="memdesc:a7c475aa8dedf9734bf642573323193e1"><td class="mdescLeft">&#160;</td><td class="mdescRight">Sets the diffusivity of fission gases within the matrix based on the selected model. The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFGDiffusionCoefficient. <a href="class_system.html#a7c475aa8dedf9734bf642573323193e1">More...</a><br /></td></tr>
<tr class="memdesc:a7c475aa8dedf9734bf642573323193e1"><td class="mdescLeft">&#160;</td><td class="mdescRight">Sets the diffusivity of fission gases within the matrix based on the selected model. The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFissionGasDiffusivity. <a href="class_system.html#a7c475aa8dedf9734bf642573323193e1">More...</a><br /></td></tr>
<tr class="separator:a7c475aa8dedf9734bf642573323193e1"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:a41cb7f78f578633bd245296e7772b975"><td class="memItemLeft" align="right" valign="top">double&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_system.html#a41cb7f78f578633bd245296e7772b975">getFissionGasDiffusivity</a> ()</td></tr>
<tr class="memdesc:a41cb7f78f578633bd245296e7772b975"><td class="mdescLeft">&#160;</td><td class="mdescRight">Retrieves the diffusivity of fission gases within the matrix. <a href="class_system.html#a41cb7f78f578633bd245296e7772b975">More...</a><br /></td></tr>
Expand Down Expand Up @@ -674,7 +674,7 @@ <h2 class="memtitle"><span class="permalink"><a href="#a7c475aa8dedf9734bf642573
</table>
</div><div class="memdoc">

<p>Sets the diffusivity of fission gases within the matrix based on the selected model. The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFGDiffusionCoefficient. </p>
<p>Sets the diffusivity of fission gases within the matrix based on the selected model. The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFissionGasDiffusivity. </p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramname">input_value</td><td>The model selection index for fission gas diffusivity. </td></tr>
Expand All @@ -683,15 +683,15 @@ <h2 class="memtitle"><span class="permalink"><a href="#a7c475aa8dedf9734bf642573
</dl>
<h3><a class="anchor" id="autotoc_md27"></a>
setFissionGasDiffusivity</h3>
<p>The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFGDiffusionCoefficient</p>
<p>iFGDiffusionCoefficient = 0 corresponds to a constant intra-granular diffusivity value, equal to 7e-19 m^2/s.</p>
<p>iFGDiffusionCoefficient = 1 set the fission gas (xenon and krypton) single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Turnbull_et_al_1988.pdf" target="_blank">Turnbull et al (1988), IWGFPT-32, Preston, UK, Sep 18-22</a>.</p>
<p>iFGDiffusionCoefficient = 2 set the xenon effective intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Matzke_1980.pdf" target="_blank">Matzke (1980), Radiation Effects, 53, 219-242</a>.</p>
<p>iFGDiffusionCoefficient = 3 set the xenon single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Turnbull_et_al_2010.pdf" target="_blank">Turnbull et al., (2010), Background and Derivation of ANS-5.4 Standard Fission Product Release Model</a>.</p>
<p>iFGDiffusionCoefficient = 4 set the xenon single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Ronchi_2007.pdf" target="_blank">Ronchi, C. High Temp 45, 552-571 (2007)</a>.</p>
<p>The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFissionGasDiffusivity</p>
<p>iFissionGasDiffusivity = 0 corresponds to a constant intra-granular diffusivity value, equal to 7e-19 m^2/s.</p>
<p>iFissionGasDiffusivity = 1 set the fission gas (xenon and krypton) single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Turnbull_et_al_1988.pdf" target="_blank">Turnbull et al (1988), IWGFPT-32, Preston, UK, Sep 18-22</a>.</p>
<p>iFissionGasDiffusivity = 2 set the xenon effective intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Matzke_1980.pdf" target="_blank">Matzke (1980), Radiation Effects, 53, 219-242</a>.</p>
<p>iFissionGasDiffusivity = 3 set the xenon single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Turnbull_et_al_2010.pdf" target="_blank">Turnbull et al., (2010), Background and Derivation of ANS-5.4 Standard Fission Product Release Model</a>.</p>
<p>iFissionGasDiffusivity = 4 set the xenon single-atom intragranular diffusivity equal to the expression in <a href="../../references/pdf_link/Ronchi_2007.pdf" target="_blank">Ronchi, C. High Temp 45, 552-571 (2007)</a>.</p>
<p>this case is for the UO2HBS. </p><dl class="section see"><dt>See also</dt><dd>This value is from <a href="../../references/pdf_link/Barani_et_al_2020.pdf" target="_blank">Barani et al. Journal of Nuclear Materials 539 (2020) 152296</a>.</dd></dl>
<p>this case is for</p>
<p>iFGDiffusionCoefficient = 99 set the xenon single-atom intragranular diffusivity to zero.</p>
<p>iFissionGasDiffusivity = 99 set the xenon single-atom intragranular diffusivity to zero.</p>

</div>
</div>
Expand Down
2 changes: 1 addition & 1 deletion docs/md_utilities__input_explanation.html
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ <h1><a class="anchor" id="autotoc_md20"></a>
Input Settings</h1>
<p>The following settings define the models and methods used for the simulation.</p>
<div class="fragment"><div class="line">1 # iGrainGrowth (0 = no grain growth, 1 = Ainscough et al. (1973), 2 = Van Uffelen et al. (2013))</div>
<div class="line">1 # iFGDiffusionCoefficient (0 = constant value, 1 = Turnbull et al. (1988))</div>
<div class="line">1 # iFissionGasDiffusivity (0 = constant value, 1 = Turnbull et al. (1988))</div>
<div class="line">1 # iDiffusionSolver (1 = SDA with quasi-stationary hypothesis, 2 = SDA without quasi-stationary hypothesis)</div>
<div class="line">1 # iIntraGranularBubbleBehavior (1 = Pizzocri et al. (2018))</div>
<div class="line">1 # iResolutionRate (0 = constant value, 1 = Turnbull (1971), 2 = Losonen (2000), 3 = thermal resolution, Cognini et al. (2021))</div>
Expand Down
2 changes: 1 addition & 1 deletion include/materials/System.h
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ class System: virtual public Material

/**
* @brief Sets the diffusivity of fission gases within the matrix based on the selected model.
* The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFGDiffusionCoefficient
* The intra-granular fission gas (xenon and krypton) diffusivity within the fuel grain is set according to the input_variable iFissionGasDiffusivity
* @param input_value The model selection index for fission gas diffusivity.
*/
void setFissionGasDiffusivity(int input_value, SciantixArray<SciantixVariable> &sciantix_variable,
Expand Down
2 changes: 1 addition & 1 deletion include/operations/SetVariablesFunctions.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ std::vector<std::string> getInputVariableNames()
std::vector<std::string> names =
{
"iGrainGrowth",
"iFGDiffusionCoefficient",
"iFissionGasDiffusivity",
"iDiffusionSolver",
"iIntraGranularBubbleBehavior",
"iResolutionRate",
Expand Down
2 changes: 1 addition & 1 deletion regression/input_settings.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
1 # iGrainGrowth (0= no grain growth, 1= Ainscough et al. (1973), 2= Van Uffelen et al. (2013))
1 # iFGDiffusionCoefficient (0= constant value, 1= Turnbull et al. (1988))
1 # iFissionGasDiffusivity (0= constant value, 1= Turnbull et al. (1988))
1 # iDiffusionSolver (1= SDA with quasi-stationary hypothesis, 2= SDA without quasi-stationary hypothesis)
1 # iIntraGranularBubbleBehavior (1= Pizzocri et al. (2018))
1 # iResolutionRate (0= constant value, 1= Turnbull (1971), 2= Losonen (2000), 3= thermal resolution, Cognini et al. (2021))
Expand Down
Loading

0 comments on commit f4f37a4

Please sign in to comment.