Skip to content
This repository has been archived by the owner on Jun 19, 2024. It is now read-only.

raviranak/emr-remote-shuffle-service

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EMR remote shuffle service

Remote Shuffle Service (RSS) provides the capability for Apache Spark applications to store shuffle data on a cluster of remote servers. See more details on Spark community document: [SPARK-25299][DISCUSSION] Improving Spark Shuffle Reliability.

In this repo, we select Aapche Celeborn as the remote shuffle service for EMR. The high level design of Apache Celeborn can be found here.

Setup instructions:

Prerequisite

  1. AWS CLI. Configure the CLI by aws configure.
  2. kubectl >=1.24
  3. eksctl >= 0.143.0
  4. helm
  5. OPTIONAL: Buildx included by Docker Desktop installation

Infrastructure

If you do not have your own environment to test the remote shuffle solution, run the command to setup the infrastructure you need. Change the EKS cluster name and AWS region if needed.

export EKSCLUSTER_NAME=eks-rss
export AWS_REGION=us-east-1
./eks_provision.sh

The shell script provides a one-click experience to create an EMR on EKS environment and OSS Spark Operator on a single EKS cluster. The EKS cluster contains the following managed nodegroups which are located in a single AZ with a same Cluster placment strategy, in order to achieve the low-latency network performance for the intercommunication between Spark apps and shuffle services. Comment out unwanted EKS node groups from the eks_provision.sh file if needed.

  • 1 - rss can scale i3en.6xlarge instances from 1 to 20 in AZ-a. They are labelled as app=rss to host the RSS servers. 2 SSD disks are mounted to each EC2 instance.
  • 2 - c59a can scale c5.9xlarge instances from 1 to 7 at AZ-a, which only has a 30GB-root volume. They are labelled with app=sparktest to run multiple EMR on EKS or OSS Spark jobs in parallel. The nodegroup is used by testing Spark apps with remote shuffle service enabled.
  • 3 - c5d9a can scales c5d.9xlarge instances from 1 to 7 at AZ-a. They are also labelled as app=sparktest to run EMR on EKS or OSS Spark jobs without RSS. Additionally, the nodegroup can be used to run TPCDS source data generation job if needed.

Enable Remote Shuffle Server (RSS)

Apache Celeborn supports Spark 2.4/3.0/3.1/3.2/3.3/3.4/3.5 and flink 1.14/1.15/1.17. The test was done under Java 8 environment only. However, you can compile the project based on Java 11 or Java 17. The only changes need to be done are: pom.xml

-    <java.version>8</java.version>
+    <java.version>17</java.version>

Then set correct JAVA_HOME for both Celeborn server and client: export JAVA_HOME=/usr/lib/jvm/YOUR_JAVA_VERSION

There are 2 options to host the RSS server:

1. Install Apache Celeborn on EKS

git clone https://github.com/aws-samples/emr-remote-shuffle-service.git
cd emr-remote-shuffle-service

Build Docker Images

For the best practice in security, it's recommended to build your own images and publish them to your own container repository.

OPTIONAL: How to build docker image
# Login to ECR
ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
ECR_URL=$ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
aws ecr get-login-password --region $AWS_REGION | docker login --username AWS --password-stdin $ECR_URL

# create a new repository as a one-off task
aws ecr create-repository --repository-name celeborn-server \
  --image-scanning-configuration scanOnPush=true
aws ecr create-repository --repository-name clb-spark-benchmark \
  --image-scanning-configuration scanOnPush=true
# Build & push server & client docker images
JAVA_TAG=8-jdk  #17-jdk
SPARK_VERSION=3.3
# build server
docker build -t $ECR_URL/celeborn-server:spark${SPARK_VERSION}_${JAVA_TAG} \
  --build-arg SPARK_VERSION=${SPARK_VERSION} \
  --build-arg java_image_tag=${JAVA_TAG}-focal \
  -f docker/celeborn-server/Dockerfile .
# push the image to ECR
docker push $ECR_URL/celeborn-server:spark${SPARK_VERSION}_${JAVA_TAG}

Alternatively, we can build a single multi-arch docker image (x86_64 and arm64) by the following steps:

# validate if the Docker Buildx CLI extension is installed
docker buildx version
# (once-off task) create a new builder that gives access to the new multi-architecture features
docker buildx create --name mybuilder --use
# build and push the custom image supporting multi-platform
JAVA_TAG=8-jdk
SPARK_VERSION=3.3
docker buildx build \
--platform linux/amd64,linux/arm64 \
-t $ECR_URL/celeborn-server:spark${SPARK_VERSION}_${JAVA_TAG} \
--build-arg SPARK_VERSION=${SPARK_VERSION} \
--build-arg java_image_tag=${JAVA_TAG}-focal \
-f docker/celeborn-server/Dockerfile \
--push .
# build client for EMR on EKS
JAVA_TAG=8-jdk
SPARK_VERSION=3.3
EMR_VERSION=emr-6.10.0
SRC_ECR_URL=755674844232.dkr.ecr.us-east-1.amazonaws.com
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $SRC_ECR_URL

docker build -t $ECR_URL/clb-spark-benchmark:${EMR_VERSION}_clb \
  --build-arg SPARK_VERSION=${SPARK_VERSION} \
  --build-arg SPARK_BASE_IMAGE=${SRC_ECR_URL}/spark/${EMR_VERSION}:latest \
  --build-arg java_image_tag=${JAVA_TAG}-focal \
  -f docker/celeborn-emr-client/Dockerfile .

docker push $ECR_URL/clb-spark-benchmark:${EMR_VERSION}_clb
# build client for OSS Spark
# SPARK_BASE_IMAGE=public.ecr.aws/myang-poc/spark:3.3.1_hadoop_3.3.1
SPARK_BASE_IMAGE=633458367150.dkr.ecr.us-west-2.amazonaws.com/spark:3.3.2_hadoop_3.3.3_dra
SPARK_VERSION=3.3
ECR_URL=$ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
docker build -t $ECR_URL/clb-spark-benchmark:spark${SPARK_VERSION}_client \
  --build-arg SPARK_VERSION=${SPARK_VERSION} \
  --build-arg SPARK_BASE_IMAGE=${SPARK_BASE_IMAGE} \
  -f docker/celeborn-oss-client/Dockerfile .

docker push $ECR_URL/clb-spark-benchmark:spark${SPARK_VERSION}_client

Run Celeborn shuffle service in EKS

Celeborn helm chart comes with a monitoring feature. Check out the OPTIONAL step to install a Prometheus Operator in order to collect the RSS server metrics on EKS.

To Setup Amazon Managed Grafana dashboard sourced from Amazon Managed Prometheus, check out the instruction here. Two pre-build Grafana dashbaords can be imported to your dashboard: EMR on EKS dashboard,and the Celeborn dashboard.

OPTIONAL: Install Prometheus for monitoring Celeborn's helm chart installs Prometheus Operator by default. In this exmaple, we will use AWS serverelss offerings: Amazon Managed Prometheus (AMP) and Amazon Managed Grafana to collect metrics and visulaize the RSS server performance in EKS.
ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
kubectl create namespace prometheus
amp=$(aws amp list-workspaces --query "workspaces[?alias=='$EKSCLUSTER_NAME'].workspaceId" --output text)
if [ -z "$amp" ]; then
    echo "Creating a new prometheus workspace..."
    export WORKSPACE_ID=$(aws amp create-workspace --alias $EKSCLUSTER_NAME --query workspaceId --output text)
else
    echo "A prometheus workspace already exists"
    export WORKSPACE_ID=$amp
fi
sed -i -- 's/{AWS_REGION}/'$AWS_REGION'/g' charts/celeborn-shuffle-service/prometheusoperator_values.yaml
sed -i -- 's/{ACCOUNTID}/'$ACCOUNT_ID'/g' charts/celeborn-shuffle-service/prometheusoperator_values.yaml
sed -i -- 's/{WORKSPACE_ID}/'$WORKSPACE_ID'/g' charts/celeborn-shuffle-service/prometheusoperator_values.yaml
sed -i -- 's/{EKSCLUSTER_NAME}/'$EKSCLUSTER_NAME'/g' charts/celeborn-shuffle-service/prometheusoperator_values.yaml
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
# check the `yaml`, ensure varaibles are populated first
helm upgrade --install prometheus prometheus-community/kube-prometheus-stack -n prometheus -f charts/celeborn-shuffle-service/prometheusoperator_values.yaml --debug
# validate in a web browser - localhost:9090, go to menu of status->targets
kubectl --namespace prometheus port-forward service/prometheus-kube-prometheus-prometheus 9090

# create pod monitor for Spark apps
kubectl apply -f charts/celeborn-shuffle-service/spark-podmonitor.yaml
# config celeborn server and replace docker images if needed
vi charts/celeborn-shuffle-service/values.yaml
# install celeborn
helm install celeborn charts/celeborn-shuffle-service  -n celeborn --create-namespace
# check progress
kubectl get all -n celeborn
# check if all workers are registered on a single master node.
kubectl logs celeborn-master-0 -n celeborn | grep Registered
kubectl logs celeborn-master-1 -n celeborn | grep Registered
kubectl logs celeborn-master-2 -n celeborn | grep Registered

# OPTIONAL: only if prometheus operator is installed
kubectl get podmonitor -n celeborn
# scale worker or master
kubectl scale statefulsets celeborn-worker -n celeborn  --replicas=5
kubectl scale statefulsets celeborn-master -n celeborn  --replicas=1

# uninstall celeborn
helm uninstall celeborn -n celeborn

2. Install Apache Celeborn on EC2

Before setup the RSS server on EC2, we need to build a Celeborn binary as below. A package apache-celeborn-${project.version}-bin.tgz will be generated.

git clone [email protected]:apache/incubator-celeborn.git
cd incubator-celeborn
./build/make-distribution.sh -Pspark-3.3

For a quick start, you can download the pre-compiled version 0.2.2 for Spark3.3 from the link, then deploy the binary to 4 X EC2 instance - 1 master + 3 workers. In this exmaple, we use the instance type i3en.6xlarge to host the cluster of RSS server.

Firstly, spin up and login to an EC2 instance, follow the steps below to build an RSS-enabled AMI, then deploy to other 3 EC2 nodes:

1.Mount 2 X instance store to the host:

# Create partition, format and mount it
sudo parted /dev/nvme1n1 mktable gpt
sudo parted /dev/nvme1n1 mkpart primary ext4 1MB 100%
sudo parted /dev/nvme2n1 mktable gpt
sudo parted /dev/nvme2n1 mkpart primary ext4 1MB 100%

sudo mkfs -t ext4 /dev/nvme1n1 /dev/nvme2n1
sudo mkdir -p /mnt/disk1
sudo mount /dev/nvme1n1 /mnt/disk1
sudo mount /dev/nvme2n1 /mnt/disk2
sudo chown -R celeborn:celeborn /mnt/disk1 /mnt/disk2

2.Create a celeborn user and CELEBORN_HOME:

export celeborn_uid=10006
export celeborn_gid=10006
export CELEBORN_HOME=/opt/celeborn

apt-get update && \
    apt-get install -y git bash tini bind9-utils telnet net-tools procps dnsutils krb5-user && \
    ln -snf /bin/bash /bin/sh && \
    rm -rf /var/cache/apt/* && \
    groupadd --gid=${celeborn_gid} celeborn && \
    useradd  --uid=${celeborn_uid} --gid=${celeborn_gid} celeborn -d /home/celeborn -m && \
    mkdir -p ${CELEBORN_HOME}

3.Unzip the tarball to $CELEBORN_HOME:

curl https://meloyang-emr-bda.s3.amazonaws.com/spark3.3-apache-celeborn-0.2.2-SNAPSHOT-bin.tgz
cat *.tgz | tar -xvzf - && mv apache-celeborn-*-bin /opt/celeborn

4.Modify directory permission in CELEBORN_HOME :

chown -R celeborn:celeborn ${CELEBORN_HOME} && \
    chmod -R ug+rw ${CELEBORN_HOME} && \
    chmod a+x ${CELEBORN_HOME}/bin/* && \
    chmod a+x ${CELEBORN_HOME}/sbin/*

5.Modify environment variables in $CELEBORN_HOME/conf/celeborn-env.sh

Example can be found here:

vi /opt/celeborn/conf/celeborn-env.sh

CELEBORN_MASTER_MEMORY=8g
CELEBORN_WORKER_MEMORY=8g
CELEBORN_WORKER_OFFHEAP_MEMORY=130g
CELEBORN_NO_DAEMONIZE=1
CELEBORN_WORKER_JAVA_OPTS="-XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:/opt/celeborn/logs/gc-worker.out -Dio.netty.leakDetectionLevel=advanced"
CELEBORN_MASTER_JAVA_OPTS="-XX:-PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:/opt/celeborn/logs/gc-master.out -Dio.netty.leakDetectionLevel=advanced"
CELEBORN_PID_DIR="/opt/celeborn/pids"
CELEBORN_LOG_DIR="/opt/celeborn/logs"

6.Modify configurations in $CELEBORN_HOME/conf/celeborn-defaults.conf

EXAMPLE: a single master RSS cluster:

# HA master mode in the EKS example
# however, we use the single master mode to simplify the EC2 setup
celeborn.ha.enabled=false

# used by client and worker to connect to master
# the endpoint can be either an alias or use your EC2's private IP DNS name
celeborn.master.endpoints=celeborn-master-0:9097
# celeborn.master.endpoints=ip-10-0-49-238.us-west-2.compute.internal:9097

celeborn.metrics.enabled=true
celeborn.network.timeout=2000s
celeborn.worker.storage.dirs /mnt/disk1,/mnt/disk2
celeborn.master.metrics.prometheus.port=9098
celeborn.worker.metrics.prometheus.port=9096
# If your hosts have disk raid or use lvm, set celeborn.worker.monitor.disk.enabled to false
celeborn.worker.monitor.disk.enabled=false
celeborn.push.io.numConnectionsPerPeer=8
celeborn.replicate.io.numConnectionsPerPeer=24
celeborn.worker.closeIdleConnections=true
celeborn.worker.commit.threads=128
celeborn.worker.fetch.io.threads=256
celeborn.worker.flusher.buffer.size=128k
# celeborn.worker.flusher.threads=512
celeborn.worker.flusher.ssd.threads: 512
celeborn.worker.push.io.threads=128
celeborn.worker.replicate.io.threads=128
# # worker recover - ip & port must be the same after a worker-restart.
# celeborn.worker.graceful.shutdown.enabled: true
# celeborn.worker.graceful.shutdown.recoverPath: /tmp/recover
# celeborn.worker.rpc.port: 9094
# celeborn.worker.fetch.port: 9092
# celeborn.worker.push.port: 9091
# celeborn.worker.replicate.port: 9089

7.Create a file called $CELEBORN_HOME/conf/log4j2.xml copied from $CELEBORN_HOME/conf/log4j2.xml.template

8.OPTIONAL: setup the /etc/hosts, make sure all worker and master nodes can SSH to each other:

#Example:

192.168.51.237 ip-192-168-51-237.us-west-2.compute.internal celeborn-worker-0
192.168.48.26 ip-192-168-48-26.us-west-2.compute.internal celeborn-worker-1

9.OPTIONAL: add a host file to $CELEBORN_HOME/conf/hosts, update the hostname by your alias accordingly.

#Example:

[master]
celeborn-master-0

[worker]
celeborn-worker-0
celeborn-worker-1
celeborn-worker-2

10.OPTIONAL: Use the command to start all services.

$CELEBORN_HOME/sbin/start-all.sh

11.Alternatively, without setup the hosts files, you can manually start the service by SSH to each EC2 instance.

  • Login to an EC2 act as a master node, then start the Celeborn master service:
    $CELEBORN_HOME/sbin/start-master.sh
  • Login to the rest of 3 X EC2s, start the Celeborn worker:
    $CELEBORN_HOME/sbin/start-worker.sh

12.If Celeborn starts successfully, the output of the Master's log should look like this:

22/10/08 19:29:11,805 INFO [main] Dispatcher: Dispatcher numThreads: 64
22/10/08 19:29:11,875 INFO [main] TransportClientFactory: mode NIO threads 64
22/10/08 19:29:12,057 INFO [main] Utils: Successfully started service 'MasterSys' on port 9097.
22/10/08 19:29:12,113 INFO [main] Master: Metrics system enabled.
22/10/08 19:29:12,125 INFO [main] HttpServer: master: HttpServer started on port 9098.
22/10/08 19:29:12,126 INFO [main] Master: Master started.
22/10/08 19:29:57,842 INFO [dispatcher-event-loop-19] Master: Registered worker
Host: 192.168.15.140
RpcPort: 37359
PushPort: 38303
FetchPort: 37569
ReplicatePort: 37093
SlotsUsed: 0()
LastHeartbeat: 0
Disks: {/mnt/disk1=DiskInfo(maxSlots: 6679, committed shuffles 0 shuffleAllocations: Map(), mountPoint: /mnt/disk1, usableSpace: 448284381184, avgFlushTime: 0, activeSlots: 0) status: HEALTHY dirs , /mnt/disk3=DiskInfo(maxSlots: 6716, committed shuffles 0 shuffleAllocations: Map(), mountPoint: /mnt/disk3, usableSpace: 450755608576, avgFlushTime: 0, activeSlots: 0) status: HEALTHY dirs , /mnt/disk2=DiskInfo(maxSlots: 6713, committed shuffles 0 shuffleAllocations: Map(), mountPoint: /mnt/disk2, usableSpace: 450532900864, avgFlushTime: 0, activeSlots: 0) status: HEALTHY dirs , /mnt/disk4=DiskInfo(maxSlots: 6712, committed shuffles 0 shuffleAllocations: Map(), mountPoint: /mnt/disk4, usableSpace: 450456805376, avgFlushTime: 0, activeSlots: 0) status: HEALTHY dirs }
WorkerRef: null

Now, let's configure the RSS Client side.

1.Setup Spark client

Copy $CELEBORN_HOME/spark/*.jar from your unzipped the tarball directory to /usr/lib/spark/jars/ on your EMR on EC2 cluster where runs Spark applications. Or directly download the pre-compiled jar for Spark version 3.3 to each EMR on EC2 nodes.

NOTE: Both Celeborn and Spark versions must match between the Server and Client side. For instance, if you chose the quick start approach, your client jar must be compiled for the Celeborn version 0.2.2 and Spark 3.3.

2.Or skip the step 1, and simply submit a Spark job mapping the client jar to your Spark's class path location during the submission:

--jars /usr/lib/spark/jars/celeborn-client-spark-3-shaded_2.12-0.2.2-SNAPSHOT.jar

Additionally, the following spark configurations should be included for a RSS-enabled Spark job:

# Shuffle manager class name changed in 0.3.0:
# < 0.3.0: org.apache.spark.shuffle.celeborn.RssShuffleManager
# >= 0.3.0: org.apache.spark.shuffle.celeborn.SparkShuffleManager
spark.shuffle.manager org.apache.spark.shuffle.celeborn.RssShuffleManager
# must use kryo serializer because java serializer do not support relocation
spark.serializer org.apache.spark.serializer.KryoSerializer
# celeborn master
spark.celeborn.master.endpoints celeborn-master-0:9097
spark.shuffle.service.enabled false
# options: hash, sort
# Hash shuffle writer use (partition count) * (celeborn.push.buffer.max.size) * (spark.executor.cores) memory.
# Sort shuffle writer uses less memory than hash shuffle writer, if your shuffle partition count is large, try to use the sort hash writer.  
spark.celeborn.client.spark.shuffle.writer hash
# We recommend setting spark.celeborn.client.push.replicate.enabled to true to enable server-side data replication
# If you have only one worker, this setting must be false 
# If your Celeborn is using HDFS, it's recommended to set this setting to false
spark.celeborn.client.push.replicate.enabled true
# Support for Spark AQE only tested under Spark 3
# we recommend setting localShuffleReader to false to get better performance of Celeborn
spark.sql.adaptive.localShuffleReader.enabled false
# If Celeborn is using HDFS
# spark.celeborn.storage.hdfs.dir hdfs://<namenode>/celeborn
# we recommend enabling aqe support to gain better performance
spark.sql.adaptive.enabled true
spark.sql.adaptive.skewJoin.enabled true

spark.celeborn.shuffle.chunk.size 4m
spark.celeborn.client.push.maxReqsInFlight 128
spark.celeborn.rpc.askTimeout 240s
spark.celeborn.client.push.blacklist.enabled true
spark.celeborn.client.push.excludeWorkerOnFailure.enabled true
spark.celeborn.client.fetch.excludeWorkerOnFailure.enabled true
spark.celeborn.client.commitFiles.ignoreExcludedWorker true

spark.sql.optimizedUnsafeRowSerializers.enabled false

Run TPCDS Benchmark

OPTIONAL: generate the TCP-DS source data

Execute the following job, which will generate TPCDS source data at 3TB scale to your S3 bucket s3://'$S3BUCKET'/BLOG_TPCDS-TEST-3T-partitioned/. Alternatively, directly copy the source data from s3://blogpost-sparkoneks-us-east-1/blog/BLOG_TPCDS-TEST-3T-partitioned to your S3.

kubectl apply -f examples/tpcds-data-gen.yaml

Run EMR on EKS Spark benchmark:

All jobs will run in a single namespace emr but seperate nodegroups in EKS cluster. Update the docker image name to your ECR URL in the following shell scripts, then run:

# go to the project root directory
cd emr-remote-shuffle-service
export EMRCLUSTER_NAME=<YOUR_EMR_VIRTUAL_CLUSTER_NAME:emr-on-eks-rss>
export AWS_REGION=<YOUR_REGION:us-west-2>

# create a job template first
aws emr-containers create-job-template --cli-input-json file://example/pod-template/clb-dra-job-template.json
aws emr-containers create-job-template --cli-input-json file://example/pod-template/dra-tracking-job-template.json

# Run TPCDS test with RSS & DRA enabled - against c59a nodegroup
./example/emr6.10-benchmark-celeborn.sh
# RUN EMR on EKS with DRA and shuffle tracking on, but without RSS - against c5d9a nodegroup
./example/emr6.10-benchmark-emr.sh
# check job progress
kubectl get po -n emr
kubectl logs <DRIVER_POD_NAME> -n emr spark-kubernetes-driver

OPTIONAL: Run OSS Spark benchmark

NOTE: some queries may not be able to complete, due to the limited resources alloated to the large scale test. Update the docker image to your image repository URL, then test the performance with the remote shuffle service enabled.

For example:

# oss spark without RSS
kubectl apply -f oss-benchmark.yaml
# with RSS
kubectl apply -f oss-benchmark-celeborn.yaml
# turn on DRA with RSS
kubectl apply -f oss-benchmark-celeborn-dra.yaml
# check job progress
kubectl get pod -n oss
# check application logs
kubectl logs celeborn-benchmark-driver -n oss

About

remote-shuffle

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 54.2%
  • Dockerfile 24.0%
  • Python 7.7%
  • Smarty 7.1%
  • Scala 7.0%