Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

implement the taxonomic classification with queries on the annotation matrix #347

Open
wants to merge 15 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
*.fai
!metagraph/tests/data/*.fa
!metagraph/tests/data/*.fai
!metagraph/tests/data/taxonomic_data/*.fa
metagraph/tests/data/*dump_test*
projects/*/temp
visualization/geolocation/data/*
Expand Down
195 changes: 195 additions & 0 deletions metagraph/integration_tests/test_taxonomy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
import unittest
import subprocess
from subprocess import PIPE
from parameterized import parameterized

from tempfile import TemporaryDirectory
import os


"""Test taxonomy classification framework"""

METAGRAPH = './metagraph'
PROTEIN_MODE = os.readlink(METAGRAPH).endswith("_Protein") # TODO - decide if we need to consider this "_Protein" case
TAX_DATA_DIR = os.path.dirname(os.path.realpath(__file__)) + '/../tests/data/taxonomic_data'

tax_tests = {
'one_thread': {
'threads': 1,
},
'nine_threads': {
'threads': 9,
}
}

test_params = [name for name, _ in tax_tests.items()]

class TestTaxonomy(unittest.TestCase):
def setUp(self):
self.tempdir = TemporaryDirectory()
self.tax_parent = {}
self.tax_root = -1
self.lca_coverage = 0.9
self.k = 20
tax_lines = open(TAX_DATA_DIR + '/dumb_nodes.dmp').readlines()
for line in tax_lines:
act_node = line.split('\t')[0].strip()
act_parent = line.split('\t')[2].strip()
self.tax_parent[act_node] = act_parent
if act_node == act_parent:
self.tax_root = act_node

def is_descendant(self, target: str, curr: str) -> bool:
if curr == target:
return True
while curr != self.tax_root:
curr = self.tax_parent[curr]
if curr == target:
return True
return False

def build_graph_and_anno_matrix(self, num_threads: int):
construct_command = '{exe} build -p {num_threads} -k {k} -o {outfile} {input}'.format(
exe=METAGRAPH,
num_threads=num_threads,
k=self.k,
outfile=self.tempdir.name + '/graph',
input=TAX_DATA_DIR + '/tax_input.fa'
)
res = subprocess.run([construct_command], shell=True)
self.assertEqual(res.returncode, 0)

annotate_command = '{exe} annotate --anno-header -i {dbg} -o {anno} -p {num_threads} {input_fasta}'.format(
exe=METAGRAPH,
dbg=self.tempdir.name + '/graph.dbg',
anno=self.tempdir.name + '/annotation',
num_threads=num_threads,
input_fasta=TAX_DATA_DIR + '/tax_input.fa'
)
res = subprocess.run([annotate_command], shell=True)
self.assertEqual(res.returncode, 0)

def get_prediction_statistics_from_stdout(self, stdout_lines: [str]) -> {}:
result = {"num_tip_hit": 0,
"num_internal_hit": 0,
"total_num_tips": 0,
"total_num_internals": 0,
"num_descendant_hit": 0,
"num_ancestor_hit_for_tips": 0,
"num_ancestor_hit_for_internals": 0,
"num_tip_misses": 0,
"num_internal_misses": 0,
"num_failed_classification": 0}

for line in stdout_lines:
if line == "":
continue
query_expected = line.split(" ")[1].split("|")[1].strip()
query_prediction = line.split(" ")[7].split("'")[1].strip()

# TaxId 0 is a wildcard for not enough discovered kmers to produce a confident classification.
if query_prediction == "0":
result["num_failed_classification"] += 1
continue

# All the tax nodes with ids {10001, 10002 .. 10008} represents internal nodes, while
# taxIds >= 10009 are reserved for the leaves.
if int(line.split(" ")[1].split("|")[1]) >= 10009:
# The current taxid is a tip, thus, it has no children in the taxonomic tree.
result["total_num_tips"] += 1
if query_expected == query_prediction:
result["num_tip_hit"] += 1
else:
if self.is_descendant(target=query_prediction, curr=query_expected):
result["num_ancestor_hit_for_tips"] += 1
else:
result["num_tip_misses"] += 1
else:
# The current taxid is an internal node.
result["total_num_internals"] += 1
if query_expected == query_prediction:
result["num_internal_hit"] += 1
else:
if self.is_descendant(target=query_prediction, curr=query_expected):
result["num_ancestor_hit_for_internals"] += 1
elif self.is_descendant(target=query_expected, curr=query_prediction):
result["num_descendant_hit"] += 1
else:
result["num_internal_misses"] += 1
return result

@parameterized.expand(test_params)
@unittest.skipIf(PROTEIN_MODE, "No canonical mode for Protein alphabets")
def test_taxonomy_getrows(self, tax_test):
self.build_graph_and_anno_matrix(tax_tests[tax_test]['threads'])
tax_class_command = '{exe} tax_class -i {dbg} {fasta_queries} --taxonomic-tree {tax_tree} \
--min-lca-coverage {lca_coverage} --label-taxid-map {label_taxid_map} ' \
'-p {num_threads} -a {anno}'.format(
exe=METAGRAPH,
dbg=self.tempdir.name + '/graph.dbg',
fasta_queries=TAX_DATA_DIR + '/tax_query.fa',
tax_tree=TAX_DATA_DIR + '/dumb_nodes.dmp',
lca_coverage=self.lca_coverage,
label_taxid_map=TAX_DATA_DIR + '/dumb.accession2taxid',
num_threads=tax_tests[tax_test]['threads'],
anno=self.tempdir.name + '/annotation.column.annodbg',
)
res = subprocess.run([tax_class_command], shell=True, stdout=PIPE)
self.assertEqual(res.returncode, 0)

res_lines = res.stdout.decode().rstrip().split('\n')
statistics = self.get_prediction_statistics_from_stdout(res_lines)

self.assertEqual(statistics["total_num_tips"], 118)
self.assertEqual(statistics["total_num_internals"], 80)

self.assertEqual(statistics["num_tip_hit"], 109)
self.assertEqual(statistics["num_internal_hit"], 38)

self.assertEqual(statistics["num_ancestor_hit_for_internals"], 5)
self.assertEqual(statistics["num_descendant_hit"], 34)
self.assertEqual(statistics["num_ancestor_hit_for_tips"], 9)

self.assertEqual(statistics["num_internal_misses"], 3)
self.assertEqual(statistics["num_tip_misses"], 0)

self.assertEqual(statistics["num_failed_classification"], 2)

@parameterized.expand(test_params)
@unittest.skipIf(PROTEIN_MODE, "No canonical mode for Protein alphabets")
def test_taxonomy_toplabels(self, tax_test):
self.build_graph_and_anno_matrix(tax_tests[tax_test]['threads'])
tax_class_command = '{exe} tax_class -i {dbg} {fasta_queries} --taxonomic-tree {tax_tree} \
--min-lca-coverage {lca_coverage} -p {num_threads} -a {anno} \
--label-taxid-map {label_taxid_map} \
--top-label-fraction {top_label_fraction}'.format(
exe=METAGRAPH,
dbg=self.tempdir.name + '/graph.dbg',
fasta_queries=TAX_DATA_DIR + '/tax_query.fa',
tax_tree=TAX_DATA_DIR + '/dumb_nodes.dmp',
lca_coverage=self.lca_coverage,
label_taxid_map=TAX_DATA_DIR + '/dumb.accession2taxid',
num_threads=tax_tests[tax_test]['threads'],
anno=self.tempdir.name + '/annotation.column.annodbg',
top_label_fraction=0.7,
)
res = subprocess.run([tax_class_command], shell=True, stdout=PIPE)
self.assertEqual(res.returncode, 0)

res_lines = res.stdout.decode().rstrip().split('\n')
statistics = self.get_prediction_statistics_from_stdout(res_lines)

self.assertEqual(statistics["total_num_tips"], 118)
self.assertEqual(statistics["total_num_internals"], 68)

self.assertEqual(statistics["num_tip_hit"], 74)
self.assertEqual(statistics["num_internal_hit"], 24)

self.assertEqual(statistics["num_ancestor_hit_for_internals"], 27)
self.assertEqual(statistics["num_descendant_hit"], 15)
self.assertEqual(statistics["num_ancestor_hit_for_tips"], 44)

self.assertEqual(statistics["num_internal_misses"], 2)
self.assertEqual(statistics["num_tip_misses"], 0)

self.assertEqual(statistics["num_failed_classification"], 14)
Loading