Skip to content

Commit

Permalink
When computing modular inverses distingush which case we are in
Browse files Browse the repository at this point in the history
There are several different scenarios where we need to compute a modular inverse

* A secret value modulo a secret prime (eg RSA-CRT setup)

* A (potentially) secret value modulo a public prime (eg inversion modulo an DL group order)

* A secret value modulo a public value that is not prime (RSA blinding setup)

* RSA secret exponent calculation, where e and phi(n) are relatively
  prime but phi(n) is not prime, and e is public

* The general case where we have no idea as to the structure of the
  modulus, and we don't know if it is public so must treat it as secret

Previously all of these went through `inverse_mod` which prevented any possible
optimizations based on cases.

Add a new (internal) header which directly exposes the various cases and apply
them within the codebase.

The only new algorithm implemented (so far) is Arazi's algorithm for inversion
of a prime modulo a non-prime. Specifically this is a special case for computing
the RSA secret exponent when `e=65537`. (Would also work for `e=3`/`e=17`/etc but
this is not implemented)
  • Loading branch information
randombit committed Jan 18, 2025
1 parent b8da4dc commit b3da780
Show file tree
Hide file tree
Showing 19 changed files with 387 additions and 77 deletions.
7 changes: 6 additions & 1 deletion src/cli/math.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#if defined(BOTAN_HAS_NUMBERTHEORY)

#include <botan/numthry.h>
#include <botan/internal/mod_inv.h>
#include <botan/internal/monty.h>
#include <iterator>

Expand All @@ -26,7 +27,11 @@ class Modular_Inverse final : public Command {
const Botan::BigInt n(get_arg("n"));
const Botan::BigInt mod(get_arg("mod"));

output() << Botan::inverse_mod(n, mod) << "\n";
if(auto inv = Botan::inverse_modulo_general(n, mod)) {
output() << *inv << "\n";
} else {
output() << "No modular inverse exists\n";
}
}
};

Expand Down
3 changes: 2 additions & 1 deletion src/cli/timing_tests.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@

#if defined(BOTAN_HAS_NUMBERTHEORY)
#include <botan/numthry.h>
#include <botan/internal/mod_inv.h>
#endif

#if defined(BOTAN_HAS_ECC_GROUP)
Expand Down Expand Up @@ -360,7 +361,7 @@ uint64_t Invmod_Timing_Test::measure_critical_function(const std::vector<uint8_t
const Botan::BigInt k(input.data(), input.size());

TimingTestTimer timer;
const Botan::BigInt inv = inverse_mod(k, m_p);
const Botan::BigInt inv = Botan::inverse_modulo_secret_prime(k, m_p);
return timer.complete();
}

Expand Down
5 changes: 4 additions & 1 deletion src/lib/ffi/ffi_mp.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
#include <botan/internal/ffi_mp.h>
#include <botan/internal/ffi_rng.h>
#include <botan/internal/ffi_util.h>
#include <botan/internal/mod_inv.h>

extern "C" {

Expand Down Expand Up @@ -212,7 +213,9 @@ int botan_mp_rshift(botan_mp_t out, const botan_mp_t in, size_t shift) {
}

int botan_mp_mod_inverse(botan_mp_t out, const botan_mp_t in, const botan_mp_t modulus) {
return BOTAN_FFI_VISIT(out, [=](auto& o) { o = Botan::inverse_mod(safe_get(in), safe_get(modulus)); });
return BOTAN_FFI_VISIT(out, [=](auto& o) {
o = Botan::inverse_modulo_general(safe_get(in), safe_get(modulus)).value_or(Botan::BigInt::zero());
});
}

int botan_mp_mod_mul(botan_mp_t out, const botan_mp_t x, const botan_mp_t y, const botan_mp_t modulus) {
Expand Down
24 changes: 24 additions & 0 deletions src/lib/math/bigint/divide.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,30 @@ void ct_divide_word(const BigInt& x, word y, BigInt& q_out, word& r_out) {
q_out = q;
}

word ct_mod_word(const BigInt& x, word y) {
BOTAN_ARG_CHECK(x.is_positive(), "The argument x must be positive");
BOTAN_ARG_CHECK(y != 0, "Cannot divide by zero");

const size_t x_bits = x.bits();

word r = 0;

for(size_t i = 0; i != x_bits; ++i) {
const size_t b = x_bits - 1 - i;
const bool x_b = x.get_bit(b);

const auto r_carry = CT::Mask<word>::expand_top_bit(r);

r *= 2;
r += x_b;

const auto r_gte_y = CT::Mask<word>::is_gte(r, y) | r_carry;
r = r_gte_y.select(r - y, r);
}

return r;
}

BigInt ct_modulo(const BigInt& x, const BigInt& y) {
if(y.is_negative() || y.is_zero()) {
throw Invalid_Argument("ct_modulo requires y > 0");
Expand Down
13 changes: 13 additions & 0 deletions src/lib/math/bigint/divide.h
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,19 @@ inline BigInt ct_divide(const BigInt& x, const BigInt& y) {
BOTAN_TEST_API
void ct_divide_word(const BigInt& x, word y, BigInt& q, word& r);

/**
* BigInt word modulo, const time variant
*
* This runs with control flow independent of the values of x/y.
* Warning: the loop bounds still leaks the size of x.
*
* @param x a positive integer
* @param y a non-zero word
* @return r the remainder of x divided by y
*/
BOTAN_TEST_API
word ct_mod_word(const BigInt& x, word y);

/**
* BigInt modulo, const time variant
*
Expand Down
1 change: 1 addition & 0 deletions src/lib/math/numbertheory/info.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ reducer.h
</header:public>

<header:internal>
mod_inv.h
monty.h
monty_exp.h
primality.h
Expand Down
170 changes: 134 additions & 36 deletions src/lib/math/numbertheory/mod_inv.cpp
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
/*
* (C) 1999-2011,2016,2018,2019,2020 Jack Lloyd
* (C) 1999-2011,2016,2018,2019,2020,2025 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include <botan/numthry.h>
#include <botan/internal/mod_inv.h>

#include <botan/numthry.h>
#include <botan/internal/ct_utils.h>
#include <botan/internal/divide.h>
#include <botan/internal/mp_core.h>
Expand All @@ -17,10 +18,10 @@ namespace {

BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod) {
// Caller should assure these preconditions:
BOTAN_DEBUG_ASSERT(n.is_positive());
BOTAN_DEBUG_ASSERT(mod.is_positive());
BOTAN_DEBUG_ASSERT(n < mod);
BOTAN_DEBUG_ASSERT(mod >= 3 && mod.is_odd());
BOTAN_ASSERT_NOMSG(n.is_positive());
BOTAN_ASSERT_NOMSG(mod.is_positive());
BOTAN_ASSERT_NOMSG(n < mod);
BOTAN_ASSERT_NOMSG(mod >= 3 && mod.is_odd());

/*
This uses a modular inversion algorithm designed by Niels Möller
Expand Down Expand Up @@ -98,10 +99,7 @@ BigInt inverse_mod_odd_modulus(const BigInt& n, const BigInt& mod) {
bigint_cnd_add(odd_u, u_w, mp1o2, mod_words);
}

auto a_is_0 = CT::Mask<word>::set();
for(size_t i = 0; i != mod_words; ++i) {
a_is_0 &= CT::Mask<word>::is_zero(a_w[i]);
}
const auto a_is_0 = CT::all_zeros(a_w, mod_words);

auto b_is_1 = CT::Mask<word>::is_equal(b_w[0], 1);
for(size_t i = 1; i != mod_words; ++i) {
Expand Down Expand Up @@ -176,32 +174,28 @@ BigInt inverse_mod_pow2(const BigInt& a1, size_t k) {

} // namespace

BigInt inverse_mod(const BigInt& n, const BigInt& mod) {
if(mod.is_zero()) {
throw Invalid_Argument("inverse_mod modulus cannot be zero");
}
if(mod.is_negative() || n.is_negative()) {
throw Invalid_Argument("inverse_mod: arguments must be non-negative");
}
if(n.is_zero() || (n.is_even() && mod.is_even())) {
return BigInt::zero();
std::optional<BigInt> inverse_modulo_general(const BigInt& x, const BigInt& mod) {
BOTAN_ARG_CHECK(x > 0, "x must be greater than zero");
BOTAN_ARG_CHECK(mod > 0, "mod must be greater than zero");
BOTAN_ARG_CHECK(x < mod, "x must be less than m");

// Easy case where gcd > 1 so no inverse exists
if(x.is_even() && mod.is_even()) {
return std::nullopt;
}

if(mod.is_odd()) {
/*
Fastpath for common case. This leaks if n is greater than mod or
not, but we don't guarantee const time behavior in that case.
*/
if(n < mod) {
return inverse_mod_odd_modulus(n, mod);
BigInt z = inverse_mod_odd_modulus(x, mod);
if(z.is_zero()) {
return std::nullopt;
} else {
return inverse_mod_odd_modulus(ct_modulo(n, mod), mod);
return z;
}
}

// If n is even and mod is even we already returned 0
// If n is even and mod is odd we jumped directly to odd-modulus algo
BOTAN_DEBUG_ASSERT(n.is_odd());
// If x is even and mod is even we already returned 0
// If x is even and mod is odd we jumped directly to odd-modulus algo
BOTAN_ASSERT_NOMSG(x.is_odd());

const size_t mod_lz = low_zero_bits(mod);
BOTAN_ASSERT_NOMSG(mod_lz > 0);
Expand All @@ -210,7 +204,12 @@ BigInt inverse_mod(const BigInt& n, const BigInt& mod) {

if(mod_lz == mod_bits - 1) {
// In this case we are performing an inversion modulo 2^k
return inverse_mod_pow2(n, mod_lz);
auto z = inverse_mod_pow2(x, mod_lz);
if(z.is_zero()) {
return std::nullopt;
} else {
return z;
}
}

if(mod_lz == 1) {
Expand All @@ -229,12 +228,12 @@ BigInt inverse_mod(const BigInt& n, const BigInt& mod) {
*/

const BigInt o = mod >> 1;
const BigInt n_redc = ct_modulo(n, o);
const BigInt n_redc = ct_modulo(x, o);
const BigInt inv_o = inverse_mod_odd_modulus(n_redc, o);

// No modular inverse in this case:
if(inv_o == 0) {
return BigInt::zero();
return std::nullopt;
}

BigInt h = inv_o;
Expand All @@ -250,19 +249,22 @@ BigInt inverse_mod(const BigInt& n, const BigInt& mod) {
*/

const BigInt o = mod >> mod_lz;
const BigInt n_redc = ct_modulo(n, o);
const BigInt inv_o = inverse_mod_odd_modulus(n_redc, o);
const BigInt inv_2k = inverse_mod_pow2(n, mod_lz);
const BigInt x_mod_o = ct_modulo(x, o);
const BigInt inv_o = inverse_mod_odd_modulus(x_mod_o, o);
const BigInt inv_2k = inverse_mod_pow2(x, mod_lz);

// No modular inverse in this case:
if(inv_o == 0 || inv_2k == 0) {
return BigInt::zero();
return std::nullopt;
}

const BigInt m2k = BigInt::power_of_2(mod_lz);
// Compute the CRT parameter
const BigInt c = inverse_mod_pow2(o, mod_lz);

// This should never happen; o is odd so gcd is 1 and inverse mod 2^k exists
BOTAN_ASSERT_NOMSG(!c.is_zero());

// Compute h = c*(inv_2k-inv_o) mod 2^k
BigInt h = c * (inv_2k - inv_o);
const bool h_neg = h.is_negative();
Expand All @@ -277,4 +279,100 @@ BigInt inverse_mod(const BigInt& n, const BigInt& mod) {
return h;
}

BigInt inverse_modulo_secret_prime(const BigInt& x, const BigInt& p) {
BOTAN_ARG_CHECK(x.is_positive() && p.is_positive(), "Parameters must be positive");
BOTAN_ARG_CHECK(x < p, "x must be less than p");
BOTAN_ARG_CHECK(p.is_odd() and p > 1, "Primes are odd integers greater than 1");

// TODO possibly use FLT, or the algorithm presented for this case in
// Handbook of Elliptic and Hyperelliptic Curve Cryptography

return inverse_mod_odd_modulus(x, p);
}

BigInt inverse_modulo_public_prime(const BigInt& x, const BigInt& p) {
return inverse_modulo_secret_prime(x, p);
}

BigInt inverse_modulo_rsa_public_modulus(const BigInt& x, const BigInt& n) {
BOTAN_ARG_CHECK(n.is_positive() && n.is_odd(), "RSA public modulus must be odd and positive");
BOTAN_ARG_CHECK(x.is_positive() and x < n, "Input must be positive and less than RSA modulus");
BigInt z = inverse_mod_odd_modulus(x, n);
BOTAN_ASSERT(!z.is_zero(), "Accidentally factored the public modulus"); // whoops
return z;
}

BigInt compute_rsa_secret_exponent(const BigInt& e, const BigInt& phi_n, const BigInt& p, const BigInt& q) {
/*
* Both p - 1 and q - 1 are chosen to be relatively prime to e. Thus
* phi(n), the least common multiple of p - 1 and q - 1, is also
* relatively prime to e.
*/
BOTAN_DEBUG_ASSERT(gcd(e, phi_n) == 1);

if(e == 65537) {
/*
Arazi's algorithm for inversion of prime x modulo a non-prime
"GCD-Free Algorithms for Computing Modular Inverses"
Marc Joye and Pascal Paillier, CHES 2003 (LNCS 2779)
https://marcjoye.github.io/papers/JP03gcdfree.pdf
This could be extended to cover other cases such as e=3 or e=17 but
these days 65537 is the standard RSA public exponent
*/

const word phi_mod_e = ct_mod_word(phi_n, 65537);

// Compute phi^-1 mod e using FLT

const word inv_phi_mod_e = [&]() {
// Need 64-bit here as accum*accum exceeds 32-bit if accum=0x10000
uint64_t accum = 1;
for(size_t i = 0; i != 16; ++i) {
accum = (accum * accum) % 65537;
accum = (accum * phi_mod_e) % 65537;
}
return static_cast<word>(accum);
}();

BOTAN_DEBUG_ASSERT((inv_phi_mod_e * phi_mod_e) % 65537 == 1);

const word neg_inv_phi_mod_e = (65537 - inv_phi_mod_e);

BigInt inv_mod_phi;
word rem_mod_phi;
ct_divide_word((phi_n * neg_inv_phi_mod_e) + 1, 65537, inv_mod_phi, rem_mod_phi);
BOTAN_UNUSED(rem_mod_phi);
return inv_mod_phi;
} else {
// TODO possibly do something else taking advantage of the special structure here

BOTAN_UNUSED(p, q);
if(auto d = inverse_modulo_general(e, phi_n)) {
return *d;
} else {
throw Internal_Error("Failed to compute RSA secret exponent");
}
}
}

BigInt inverse_mod(const BigInt& n, const BigInt& mod) {
if(mod.is_zero()) {
throw Invalid_Argument("inverse_mod modulus cannot be zero");
}
if(mod.is_negative() || n.is_negative()) {
throw Invalid_Argument("inverse_mod: arguments must be non-negative");
}
if(n.is_zero() || (n.is_even() && mod.is_even())) {
return BigInt::zero();
}

if(n >= mod) {
return inverse_mod(ct_modulo(n, mod), mod);
}

return inverse_modulo_general(n, mod).value_or(BigInt::zero());
}

} // namespace Botan
Loading

0 comments on commit b3da780

Please sign in to comment.