Skip to content

Commit

Permalink
add fill in missing pixel function
Browse files Browse the repository at this point in the history
  • Loading branch information
sliu008 committed Jan 24, 2024
1 parent d96347a commit 82fb5a6
Show file tree
Hide file tree
Showing 3 changed files with 170 additions and 88 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Deprecated
### Removed
### Fixed
- ** Add function to fill in missing pixels for certain collections **
- [issue/26](https://github.com/podaac/tig/issues/26): Fix images with missing pixels for ASCAT collections
### Security


Expand Down
102 changes: 92 additions & 10 deletions podaac/tig/tig.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
Main module for the Tool for Image Generation (TIG)
"""
# pylint: disable=invalid-name
# pylint: disable=invalid-name, too-many-lines

import os
import logging
Expand Down Expand Up @@ -492,6 +492,89 @@ def generate_images_group(self, image_format='png', nearest=False, world_file=Fa
self.logger.info("Finished processing variables")
return output_images

def get_non_black_neighbor_value(self, img, x, y):
"""
Get the value of a neighboring pixel that isn't black for a given pixel coordinate in an image array.
Parameters:
- img: NumPy array representing the image.
- x: Row coordinate of the pixel.
- y: Column coordinate of the pixel.
Returns:
- Value of a neighboring pixel that isn't black, or None if all neighbors are black.
"""
height, width = img.shape[:2]

for i in range(-1, 2):
for j in range(-1, 2):
# Skip the central pixel itself
if i == 0 and j == 0:
continue

# Calculate neighboring pixel coordinates
neighbor_x = x + i
neighbor_y = y + j

# Check if the neighbor is within the image bounds
if 0 <= neighbor_x < height and 0 <= neighbor_y < width:
neighbor_value = img[neighbor_x, neighbor_y]

# Check if the neighbor is not black (assuming black is 0)
if not np.isnan(neighbor_value):
return neighbor_value

# Return None if all neighbors are black
return None

def fill_swath_with_neighboring_pixel(self, output_array):
"""
This method fills NaN values in the input image with RGB values from neighboring pixels.
The replacement values are chosen randomly from non-missing pixel portions of the image.
The probability of selecting a value is inversely proportional to the distance from the NaN position.
The function uses a helper function `non_nan_neighbors` to check if the neighboring values of a given
position are not NaN. It then retrieves x and y coordinates of NaN values with at least one non-NaN neighbor
and fills the NaN values in the copy with values from these neighbors.
Parameters:
- output_array (numpy.ndarray): Input image with missing data represented as NaN values.
Returns:
numpy.ndarray: (numpy.ndarray): Output image with missing values surrounded by data filled in.
"""

def non_nan_neighbors(arr, x, y):
"""
Check if the neighboring values of a given position are not NaN.
Parameters:
- arr (numpy.ndarray): Input array.
- x (int): x-coordinate of the position to check.
- y (int): y-coordinate of the position to check.
Returns:
bool: True if there is at least one non-NaN neighbor, False otherwise.
"""
neighbors = [
(x-1, y), (x+1, y), # Left and right neighbors
(x, y-1), (x, y+1) # Up and down neighbors
]
non_nan_count = sum(1 for i, j in neighbors if 0 <= i < arr.shape[0] and 0 <= j < arr.shape[1] and not np.isnan(arr[i, j]))
return non_nan_count >= 1

# Get the indices of NaN values
img_with_neighbor_filled = output_array.copy()
x_swath, y_swath = zip(*[(x, y) for x, y in zip(*np.where(np.isnan(output_array))) if non_nan_neighbors(output_array, x, y)])

for index, (x, y) in enumerate(zip(x_swath, y_swath)): # pylint: disable=unused-variable
value = self.get_non_black_neighbor_value(output_array, x, y)
if value is not None:
img_with_neighbor_filled[x, y] = value

return img_with_neighbor_filled

def process_variable(self,
var,
lon_array,
Expand Down Expand Up @@ -561,16 +644,12 @@ def process_variable(self,
group_string = group.strip('/').replace('/', '.').replace(" ", "_")
file_name = '.'.join(x for x in [granule_id, group_string, variable, image_format] if x)
output_location = "{}/{}".format(self.output_dir, file_name)
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)

rows = self.rows
cols = self.cols

# Create the output directory if it doesn't exist
os.makedirs(self.output_dir, exist_ok=True)

if override_rows:
rows = override_rows
if override_cols:
cols = override_cols
rows = override_rows if override_rows else self.rows
cols = override_cols if override_cols else self.cols

if var.get('is_swot_expert') and var.get('id') == "ssha_karin_2":
lon_array, lat_array, var_array = self.get_swot_expert_data(group_string)
Expand All @@ -587,6 +666,9 @@ def process_variable(self,
output_vals[output_vals == fill_value] = np.nan
out_array = np.flip(output_vals.flatten().reshape(rows, cols), 0)

if var.get('fill_missing'):
out_array = self.fill_swath_with_neighboring_pixel(out_array)

# Color the image output array and save to a file
plt.imsave(output_location,
out_array,
Expand Down
Loading

0 comments on commit 82fb5a6

Please sign in to comment.