-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into feat/discrete-fourier-transform
- Loading branch information
Showing
12 changed files
with
961 additions
and
78 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
use std::ops::Add; | ||
|
||
use super::CurveParams; | ||
use crate::field::{gf_101::GF101, FiniteField}; | ||
|
||
/// The Elliptic curve $y^2=x^3+3$, i.e. | ||
/// - a = 0 | ||
/// - b = 3 | ||
/// - generator todo | ||
/// - order todo | ||
/// - field element type todo, but mock with u64 - bad thor, u64 does not implement p3_field | ||
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)] | ||
pub struct C101; | ||
|
||
impl CurveParams for C101 { | ||
type FieldElement = GF101; | ||
|
||
const EQUATION_A: Self::FieldElement = GF101::new(0); | ||
const EQUATION_B: Self::FieldElement = GF101::new(3); | ||
const GENERATOR: (Self::FieldElement, Self::FieldElement) = (GF101::new(1), Self::TWO); | ||
const ORDER: u32 = GF101::ORDER; | ||
const THREE: Self::FieldElement = GF101::new(3); | ||
const TWO: Self::FieldElement = GF101::new(2); | ||
} | ||
|
||
mod test { | ||
use super::*; | ||
use crate::curves::AffinePoint; | ||
type F = GF101; | ||
|
||
#[test] | ||
fn point_doubling() { | ||
let g = AffinePoint::<C101>::generator(); | ||
|
||
let two_g = g.point_doubling(); | ||
let expected_2g = AffinePoint::<C101>::new(F::new(68), F::new(74)); | ||
let expected_negative_2g = AffinePoint::<C101>::new(F::new(68), F::new(27)); | ||
assert_eq!(two_g, expected_2g); | ||
assert_eq!(-two_g, expected_negative_2g); | ||
|
||
let four_g = two_g.point_doubling(); | ||
let expected_4g = AffinePoint::<C101>::new(F::new(65), F::new(98)); | ||
let expected_negative_4g = AffinePoint::<C101>::new(F::new(65), F::new(3)); | ||
assert_eq!(four_g, expected_4g); | ||
assert_eq!(-four_g, expected_negative_4g); | ||
|
||
let eight_g = four_g.point_doubling(); | ||
let expected_8g = AffinePoint::<C101>::new(F::new(18), F::new(49)); | ||
let expected_negative_8g = AffinePoint::<C101>::new(F::new(18), F::new(52)); | ||
assert_eq!(eight_g, expected_8g); | ||
assert_eq!(-eight_g, expected_negative_8g); | ||
|
||
let sixteen_g = eight_g.point_doubling(); | ||
let expected_16g = AffinePoint::<C101>::new(F::new(1), F::new(99)); | ||
let expected_negative_16g = AffinePoint::<C101>::new(F::new(1), F::new(2)); | ||
assert_eq!(sixteen_g, expected_16g); | ||
assert_eq!(-sixteen_g, expected_negative_16g); | ||
assert_eq!(g, -sixteen_g); | ||
} | ||
|
||
#[test] | ||
fn order_17() { | ||
let g = AffinePoint::<C101>::generator(); | ||
let mut g_double = g.point_doubling(); | ||
let mut count = 2; | ||
while g_double != g && -g_double != g { | ||
g_double = g_double.point_doubling(); | ||
count *= 2; | ||
} | ||
assert_eq!(count + 1, 17); | ||
} | ||
|
||
#[test] | ||
fn point_addition() { | ||
let g = AffinePoint::<C101>::generator(); | ||
let two_g = g.point_doubling(); | ||
let three_g = g + two_g; | ||
let expected_3g = AffinePoint::<C101>::new(F::new(26), F::new(45)); | ||
let expected_negative_3g = AffinePoint::<C101>::new(F::new(26), F::new(56)); | ||
assert_eq!(three_g, expected_3g); | ||
assert_eq!(-three_g, expected_negative_3g); | ||
|
||
let four_g = g + three_g; | ||
let expected_4g = AffinePoint::<C101>::new(F::new(65), F::new(98)); | ||
let expected_negative_4g = AffinePoint::<C101>::new(F::new(65), F::new(3)); | ||
assert_eq!(four_g, expected_4g); | ||
assert_eq!(-four_g, expected_negative_4g); | ||
|
||
let five_g = g + four_g; | ||
let expected_5g = AffinePoint::<C101>::new(F::new(12), F::new(32)); | ||
let expected_negative_5g = AffinePoint::<C101>::new(F::new(12), F::new(69)); | ||
assert_eq!(five_g, expected_5g); | ||
assert_eq!(-five_g, expected_negative_5g); | ||
|
||
assert_eq!(g + AffinePoint::new_infty(), g); | ||
assert_eq!(AffinePoint::new_infty() + g, g); | ||
assert_eq!(g + (-g), AffinePoint::new_infty()); | ||
} | ||
|
||
#[test] | ||
fn scalar_multiplication_rhs() { | ||
let g = AffinePoint::<C101>::generator(); | ||
let two_g = g * 2; | ||
let expected_2g = g.point_doubling(); | ||
assert_eq!(two_g, expected_2g); | ||
assert_eq!(-two_g, -expected_2g); | ||
} | ||
|
||
#[test] | ||
fn scalar_multiplication_lhs() { | ||
let g = AffinePoint::<C101>::generator(); | ||
let two_g = 2 * g; | ||
let expected_2g = g.point_doubling(); | ||
assert_eq!(two_g, expected_2g); | ||
assert_eq!(-two_g, -expected_2g); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
use std::ops::Add; | ||
|
||
use super::CurveParams; | ||
use crate::field::{gf_101::GF101, gf_101_2::QuadraticPlutoField, ExtensionField, FiniteField}; | ||
|
||
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)] | ||
pub struct G2Curve {} | ||
// The Elliptic curve $y^2=x^3+3$, i.e. | ||
// - a = 0 | ||
// - b = 3 | ||
|
||
impl CurveParams for G2Curve { | ||
type FieldElement = QuadraticPlutoField<GF101>; | ||
|
||
const EQUATION_A: Self::FieldElement = QuadraticPlutoField::<GF101>::ZERO; | ||
const EQUATION_B: Self::FieldElement = | ||
QuadraticPlutoField::<GF101>::new(GF101::new(3), GF101::ZERO); | ||
const GENERATOR: (Self::FieldElement, Self::FieldElement) = ( | ||
QuadraticPlutoField::<GF101>::new(GF101::new(36), GF101::ZERO), | ||
QuadraticPlutoField::<GF101>::new(GF101::ZERO, GF101::new(31)), | ||
); | ||
const ORDER: u32 = 289; | ||
// extension field subgroup should have order r^2 where r is order of first group | ||
const THREE: QuadraticPlutoField<GF101> = | ||
QuadraticPlutoField::<GF101>::new(GF101::new(3), GF101::ZERO); | ||
const TWO: QuadraticPlutoField<GF101> = | ||
QuadraticPlutoField::<GF101>::new(GF101::TWO, GF101::ZERO); | ||
} | ||
|
||
// a naive impl with affine point | ||
|
||
impl G2Curve { | ||
pub fn on_curve( | ||
x: QuadraticPlutoField<GF101>, | ||
y: QuadraticPlutoField<GF101>, | ||
) -> (QuadraticPlutoField<GF101>, QuadraticPlutoField<GF101>) { | ||
println!("X: {:?}, Y: {:?}", x, y); | ||
// TODO Continue working on this | ||
// ( x ) ( y ) ( x , y ) | ||
// example: plug in ((36, 0), (0, 31)): (36, 31t) | ||
// x = 36, y = 31t, | ||
// curve : y^2=x^3+3, | ||
|
||
// y = (31t)^2 = 52 * t^2 | ||
// check if there are any x terms, if not, element is in base field | ||
let mut LHS = x; | ||
let mut RHS = y; | ||
if x.value[1] != GF101::ZERO { | ||
LHS = x * x * (-GF101::new(2)) - Self::EQUATION_B; | ||
} else { | ||
LHS = x * x * x - Self::EQUATION_B; | ||
} | ||
if y.value[1] != GF101::ZERO { | ||
// y has degree two so if there is a x -> there will be an x^2 term which we substitude with | ||
// -2 since... TODO explain this and relationship to embedding degree | ||
RHS *= -GF101::new(2); | ||
} | ||
// minus | ||
LHS -= Self::EQUATION_B; | ||
assert_eq!(LHS, RHS, "Point is not on curve"); | ||
(x, y) | ||
} | ||
} | ||
|
||
mod test { | ||
use super::*; | ||
use crate::curves::AffinePoint; | ||
|
||
// #[test] | ||
// fn on_curve() { | ||
// let gen = G2Curve::on_curve(G2Curve::GENERATOR.0, G2Curve::GENERATOR.1); | ||
// } | ||
|
||
// #[test] | ||
// fn doubling() { | ||
// let g = AffinePoint::<G2Curve>::generator(); | ||
// println!("g: {:?}", g) | ||
|
||
// // want to asset that g = (36, 31*X) | ||
// // right now this ^ fails to construct as it doesn't believe that the generator is a valid | ||
// point on the curve // want to asset that 2g = (90 , 82*X) | ||
// } | ||
} |
Oops, something went wrong.