Skip to content

phase/dtt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dtt experiments

Experimenting with Dependent Type Theory in Rust. The goal here is to attempt to lower MLT Terms to an SSA IR.

The core is extremely simple and as such a number of things need to be encoded.

Dependent Products:

Σ : Π A : U (A → U) → U′
Σ = λA : U . λB : A → U . Π C : U (Π x : A B(x) → C) → C

sigma = \A : U

Here are some examples:

N : Type 0
Z : N
S : forall _ : N -> N
three = \f : (forall _ : N -> N) => \x : N => (f (f (f x)))
check (three S)
check (three (three S))
eval ((three (three S)) Z)

running this code will produce:

(three S) : N -> N
(three (three S)) : N -> N
((three (three S)) Z)
    = (S (S (S (S (S (S (S (S (S Z)))))))))
    : N

Irrelevance

Thought: If irrelevant terms are erased, we can extract functions that don't need dependent types for computation but still benefit from type checking.

Vec T .n
val Vec : Π(x : Type 0) -> (.Π(l: C) -> Type 0)

val append : Vec T .n -> Vec T .m -> Vec T .(n + m)
append: Π(T: Type0) -> (
          .Π(n: Nat) -> (
            .Π(m: Nat) -> (
              Π(_:Vec T .n) -> (
                Π(_:Vec T .m) -> (
                  Vec T .(+ n m)
                )
              )
            )
          )
        )

val erased_Vec : Π(x : Type 0) -> Type 0
val erased_append : Vec T -> Vec T -> Vec T
erased_append : Π(T: Type0) -> (
                  Π(_:Vec T) -> (
                    Π(_:Vec T) -> (
                      Vec T
                    )
                  )
                )

Erasing Π Types

Π(x : Type 0) -> (.Π(l: C) -> Type 0)
Π(x : Type 0) -> Type 0

.Π(x:X) -> T ==> .T, erroring if .T depends on x

Erasing λ Expressions

.λ(x:X) => E ==> .E, erroring if .E depends on x

Erasing Applications

((Vec T) .n)
(Vec T)

.(a b) ==> .a, erroring if .a requires a parameter

References

About

dependent type theory experiment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published