-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
127 changed files
with
775 additions
and
275 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,51 @@ | ||
--- | ||
ci: | ||
autofix_commit_msg: "Chore: pre-commit autoupdate" | ||
|
||
repos: | ||
|
||
- repo: https://github.com/astral-sh/ruff-pre-commit | ||
rev: v0.5.0 | ||
hooks: | ||
- id: ruff | ||
args: [ | ||
--fix, | ||
--preview, | ||
--exit-non-zero-on-fix, | ||
--config=ruff.toml, | ||
] | ||
- repo: https://github.com/pre-commit/pre-commit-hooks | ||
rev: v4.6.0 | ||
rev: v4.5.0 | ||
hooks: | ||
- id: trailing-whitespace | ||
- id: end-of-file-fixer | ||
exclude: LICENSES/headers | ||
- id: check-yaml | ||
# !reference is specific to gitlab | ||
# !! prefix is specific to mkdocs | ||
exclude: \.gitlab-ci.yml|mkdocs.yml | ||
- id: check-added-large-files | ||
- id: check-json | ||
- id: pretty-format-json | ||
args: [ | ||
--autofix, | ||
--no-sort-keys, | ||
] | ||
exclude: \.ipynb | ||
- id: check-toml | ||
- id: destroyed-symlinks | ||
- id: check-symlinks | ||
- repo: https://github.com/pre-commit/pygrep-hooks | ||
rev: v1.10.0 | ||
hooks: | ||
- id: rst-backticks | ||
- id: rst-directive-colons | ||
- id: rst-inline-touching-normal | ||
- repo: https://github.com/kynan/nbstripout | ||
rev: 0.7.1 | ||
hooks: | ||
- id: nbstripout | ||
- repo: https://github.com/igorshubovych/markdownlint-cli | ||
rev: v0.39.0 | ||
hooks: | ||
- id: markdownlint | ||
args: [ | ||
--fix, | ||
--disable, | ||
MD024, | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
''' | ||
Copyright 2024 Capgemini | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
''' | ||
import numpy as np | ||
import pandas as pd | ||
from scipy.optimize import minimize | ||
from sostrades_core.execution_engine.execution_engine import ExecutionEngine | ||
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import ( | ||
InstanciatedSeries, | ||
TwoAxesInstanciatedChart, | ||
) | ||
|
||
from energy_models.database_witness_energy import DatabaseWitnessEnergy | ||
from energy_models.glossaryenergy import GlossaryEnergy | ||
from energy_models.models.clean_energy.clean_energy_simple_techno.clean_energy_simple_techno_disc import ( | ||
CleanEnergySimpleTechnoDiscipline, | ||
) | ||
|
||
year_calibration = 2015 | ||
|
||
|
||
df_invest_historic = DatabaseWitnessEnergy.get_techno_invest_df(techno_name=GlossaryEnergy.CleanEnergySimpleTechno) | ||
df_prod_historic = DatabaseWitnessEnergy.get_techno_prod(techno_name=GlossaryEnergy.CleanEnergySimpleTechno, year=2020)[1].value | ||
ref_price_2023 = 70.76 # $/MWh | ||
# data to run techno | ||
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict[GlossaryEnergy.CleanEnergySimpleTechno] | ||
year_start_fitting = int(max(df_invest_historic['years'].min() + construction_delay, df_prod_historic['years'].min(), year_calibration)) | ||
year_end_fitting = int(min(df_invest_historic['years'].max(), df_prod_historic['years'].max())) | ||
|
||
prod_values_historic = df_prod_historic.loc[(df_prod_historic['years'] >= year_start_fitting) & (df_prod_historic['years'] <= year_end_fitting)]['production'].values | ||
years_fitting = list(np.arange(year_start_fitting, year_end_fitting + 1)) | ||
invest_df = df_invest_historic.loc[(df_invest_historic['years'] >= year_start_fitting) & (df_invest_historic['years'] <= year_end_fitting)] | ||
margin = pd.DataFrame({GlossaryEnergy.Years: years_fitting, GlossaryEnergy.MarginValue: 110}) | ||
transport = pd.DataFrame({GlossaryEnergy.Years: years_fitting, 'transport': np.zeros(len(years_fitting))}) | ||
co2_taxes = pd.DataFrame({GlossaryEnergy.Years: years_fitting, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years_fitting))}) | ||
stream_prices = pd.DataFrame({GlossaryEnergy.Years: years_fitting}) | ||
resources_price = pd.DataFrame({GlossaryEnergy.Years: years_fitting}) | ||
techno_dict_default = CleanEnergySimpleTechnoDiscipline.techno_infos_dict_default | ||
|
||
name = 'Test' | ||
model_name = GlossaryEnergy.CleanEnergySimpleTechno | ||
ee = ExecutionEngine(name) | ||
ns_dict = {'ns_public': name, | ||
'ns_energy': name, | ||
'ns_energy_study': f'{name}', | ||
'ns_clean_energy': name, | ||
'ns_resource': name} | ||
ee.ns_manager.add_ns_def(ns_dict) | ||
|
||
mod_path = 'energy_models.models.clean_energy.clean_energy_simple_techno.clean_energy_simple_techno_disc.CleanEnergySimpleTechnoDiscipline' | ||
builder = ee.factory.get_builder_from_module( | ||
model_name, mod_path) | ||
|
||
ee.factory.set_builders_to_coupling_builder(builder) | ||
|
||
ee.configure() | ||
ee.display_treeview_nodes() | ||
|
||
|
||
def run_model(x: list): | ||
techno_dict_default["Capex_init"] = x[0] | ||
init_age_distrib_factor = x[1] | ||
techno_dict_default["learning_rate"] = x[2] | ||
techno_dict_default["Opex_percentage"] = x[3] | ||
techno_dict_default["WACC"] = x[4] | ||
|
||
inputs_dict = { | ||
f'{name}.{GlossaryEnergy.YearStart}': year_start_fitting, | ||
f'{name}.{GlossaryEnergy.YearEnd}': year_end_fitting, | ||
f'{name}.{GlossaryEnergy.StreamPricesValue}': stream_prices, | ||
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years_fitting}), | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df, | ||
f'{name}.{GlossaryEnergy.TransportMarginValue}': margin, | ||
f'{name}.{GlossaryEnergy.CO2TaxesValue}': co2_taxes, | ||
f'{name}.{GlossaryEnergy.TransportCostValue}': transport, | ||
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': resources_price, | ||
f'{name}.{model_name}.{GlossaryEnergy.MarginValue}': margin, | ||
f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor, | ||
f'{name}.{model_name}.techno_infos_dict': techno_dict_default, | ||
} | ||
|
||
ee.load_study_from_input_dict(inputs_dict) | ||
|
||
ee.execute() | ||
|
||
prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) | ||
prod_values_model = prod_df[f"{GlossaryEnergy.clean_energy} (TWh)"].values * 1000 | ||
|
||
price_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoPricesValue)[0]) | ||
|
||
price_model_values = float((price_df.loc[price_df[GlossaryEnergy.Years] == 2023, f"{GlossaryEnergy.CleanEnergySimpleTechno}_wotaxes"]).values) | ||
return prod_values_model, price_model_values | ||
|
||
|
||
def fitting_renewable(x: list): | ||
prod_values_model, price_model_values = run_model(x) | ||
return (((prod_values_model - prod_values_historic)) ** 2).mean() + (price_model_values - ref_price_2023) ** 2 | ||
|
||
|
||
# Initial guess for the variables | ||
x0 = np.array([250., 1., 0.0, 0.2, 0.1]) | ||
#x0 = np.array([743.8, 1.3, 0.06, 0.0, 0.06]) | ||
|
||
bounds = [(0, 10000), (0, 1.1), (0.00, 0.), (0.001, 0.99), (0.0001, 0.3)] | ||
|
||
# Use minimize to find the minimum of the function | ||
result = minimize(fitting_renewable, x0, bounds=bounds) | ||
|
||
prod_values_model, price_model_values = run_model(result.x) | ||
|
||
# Print the result | ||
#print("Optimal solution:", result.x) | ||
print("Function value at the optimum:", result.fun) | ||
|
||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'production (TWh)', | ||
chart_name='Production : model vs historic') | ||
|
||
|
||
serie = InstanciatedSeries(years_fitting, prod_values_model, 'model', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
serie = InstanciatedSeries(years_fitting, prod_values_historic, 'historic', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
parameters = ["capex_init", "init_age_distrib_factor", "learning_rate", "opex_percentage", "wacc"] | ||
opt_values = dict(zip(parameters, np.round(result.x, 2))) | ||
for key, val in opt_values.items(): | ||
print("Optimal", key, ":", val) | ||
|
||
capex_init, init_age_distrib_factor, learning_rate, opex_percentage, wacc = result.x | ||
|
||
disc = ee.dm.get_disciplines_with_name( | ||
f'{name}.{model_name}')[0] | ||
filters = disc.get_chart_filter_list() | ||
graph_list = disc.get_post_processing_list(filters) | ||
for graph in graph_list: | ||
graph.to_plotly().show() | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
''' | ||
Copyright 2024 Capgemini | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
''' | ||
import numpy as np | ||
import pandas as pd | ||
from scipy.optimize import minimize | ||
from sostrades_core.execution_engine.execution_engine import ExecutionEngine | ||
from sostrades_core.tools.post_processing.charts.two_axes_instanciated_chart import ( | ||
InstanciatedSeries, | ||
TwoAxesInstanciatedChart, | ||
) | ||
|
||
from energy_models.database_witness_energy import DatabaseWitnessEnergy | ||
from energy_models.glossaryenergy import GlossaryEnergy | ||
from energy_models.models.fossil.fossil_simple_techno.fossil_simple_techno_disc import ( | ||
FossilSimpleTechnoDiscipline, | ||
) | ||
|
||
year_calibration = 2015 | ||
|
||
df_invest_historic = DatabaseWitnessEnergy.get_techno_invest_df(techno_name=GlossaryEnergy.FossilSimpleTechno) | ||
df_prod_historic = DatabaseWitnessEnergy.get_techno_prod(techno_name=GlossaryEnergy.FossilSimpleTechno, year=2020)[1].value | ||
ref_price_2023 = 121.5 # $/MWh Source: chatgpt LCOE without tax | ||
# data to run techno | ||
construction_delay = GlossaryEnergy.TechnoConstructionDelayDict[GlossaryEnergy.FossilSimpleTechno] | ||
year_start_fitting = int(max(df_invest_historic['years'].min() + construction_delay, df_prod_historic['years'].min(), year_calibration)) | ||
year_end_fitting = int(min(df_invest_historic['years'].max(), df_prod_historic['years'].max())) | ||
|
||
prod_values_historic = df_prod_historic.loc[(df_prod_historic['years'] >= year_start_fitting) & (df_prod_historic['years'] <= year_end_fitting)]['production'].values | ||
years_fitting = list(np.arange(year_start_fitting, year_end_fitting + 1)) | ||
invest_df = df_invest_historic.loc[(df_invest_historic['years'] >= year_start_fitting) & (df_invest_historic['years'] <= year_end_fitting)] | ||
margin = pd.DataFrame({GlossaryEnergy.Years: years_fitting, GlossaryEnergy.MarginValue: 110}) | ||
transport = pd.DataFrame({GlossaryEnergy.Years: years_fitting, 'transport': np.zeros(len(years_fitting))}) | ||
co2_taxes = pd.DataFrame({GlossaryEnergy.Years: years_fitting, GlossaryEnergy.CO2Tax: np.linspace(0., 0., len(years_fitting))}) | ||
stream_prices = pd.DataFrame({GlossaryEnergy.Years: years_fitting}) | ||
resources_price = pd.DataFrame({GlossaryEnergy.Years: years_fitting}) | ||
techno_dict_default = FossilSimpleTechnoDiscipline.techno_infos_dict_default | ||
|
||
name = 'Test' | ||
model_name = GlossaryEnergy.FossilSimpleTechno | ||
ee = ExecutionEngine(name) | ||
ns_dict = {'ns_public': name, | ||
'ns_energy': name, | ||
'ns_energy_study': f'{name}', | ||
'ns_fossil': name, | ||
'ns_resource': name} | ||
ee.ns_manager.add_ns_def(ns_dict) | ||
|
||
mod_path = 'energy_models.models.fossil.fossil_simple_techno.fossil_simple_techno_disc.FossilSimpleTechnoDiscipline' | ||
builder = ee.factory.get_builder_from_module( | ||
model_name, mod_path) | ||
|
||
ee.factory.set_builders_to_coupling_builder(builder) | ||
|
||
ee.configure() | ||
ee.display_treeview_nodes() | ||
|
||
|
||
|
||
def run_model(x: list, year_end: int = year_end_fitting): | ||
techno_dict_default["Capex_init"] = x[0] | ||
init_age_distrib_factor = x[1] | ||
techno_dict_default["learning_rate"] = x[2] | ||
techno_dict_default["Opex_percentage"] = x[3] | ||
techno_dict_default["WACC"] = x[4] | ||
utilisation_ratio = pd.DataFrame({GlossaryEnergy.Years: years_fitting, | ||
GlossaryEnergy.UtilisationRatioValue: x[5:]}) | ||
|
||
inputs_dict = { | ||
f'{name}.{GlossaryEnergy.YearStart}': year_start_fitting, | ||
f'{name}.{GlossaryEnergy.YearEnd}': year_end, | ||
f'{name}.{GlossaryEnergy.StreamPricesValue}': stream_prices, | ||
f'{name}.{GlossaryEnergy.StreamsCO2EmissionsValue}': pd.DataFrame({GlossaryEnergy.Years: years_fitting}), | ||
f'{name}.{model_name}.{GlossaryEnergy.InvestLevelValue}': invest_df, | ||
f'{name}.{GlossaryEnergy.TransportMarginValue}': margin, | ||
f'{name}.{GlossaryEnergy.CO2TaxesValue}': co2_taxes, | ||
f'{name}.{GlossaryEnergy.TransportCostValue}': transport, | ||
f'{name}.{GlossaryEnergy.ResourcesPriceValue}': resources_price, | ||
f'{name}.{model_name}.{GlossaryEnergy.MarginValue}': margin, | ||
f'{name}.{model_name}.{GlossaryEnergy.InitialPlantsAgeDistribFactor}': init_age_distrib_factor, | ||
f'{name}.{model_name}.techno_infos_dict': techno_dict_default, | ||
f'{name}.{model_name}.{GlossaryEnergy.UtilisationRatioValue}': utilisation_ratio, | ||
} | ||
|
||
ee.load_study_from_input_dict(inputs_dict) | ||
|
||
ee.execute() | ||
|
||
prod_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoProductionValue)[0]) | ||
prod_values_model = prod_df["fossil (TWh)"].values * 1000 | ||
|
||
price_df = ee.dm.get_value(ee.dm.get_all_namespaces_from_var_name(GlossaryEnergy.TechnoPricesValue)[0]) | ||
|
||
price_model_values = float((price_df.loc[price_df[GlossaryEnergy.Years] == 2023, f"{GlossaryEnergy.FossilSimpleTechno}_wotaxes"]).values) | ||
return prod_values_model, price_model_values | ||
|
||
|
||
def fitting_renewable(x: list): | ||
prod_values_model, price_model_values = run_model(x) | ||
return (((prod_values_model - prod_values_historic)) ** 2).mean() + (price_model_values - ref_price_2023) ** 2 | ||
|
||
|
||
# Initial guess for the variables | ||
# [capex_init, init_age_distrib_factor, learnin_rate, Opex_fraction, WACC, utilization_ratio] | ||
x0 = np.concatenate((np.array([200., 1., 0.0, 0.024, 0.058]), 100.0 * np.ones_like(years_fitting))) | ||
|
||
# can put different lower and upper bounds for utilization ratio if want to activate it | ||
bounds = [(0, 10000), (1.0, 1.0), (0.0, 0.0), (0.001, 0.99), (0.058, 0.3)] + len(years_fitting) * [(100.0, 100.0)] | ||
|
||
# Use minimize to find the minimum of the function | ||
result = minimize(fitting_renewable, x0, bounds=bounds) | ||
|
||
prod_values_model, price_model_values = run_model(result.x) | ||
|
||
# Print the result | ||
print("Function value at the optimum:", result.fun) | ||
|
||
|
||
new_chart = TwoAxesInstanciatedChart('years', 'production (TWh)', | ||
chart_name='Production : model vs historic') | ||
|
||
|
||
serie = InstanciatedSeries(years_fitting, prod_values_model, 'model', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
serie = InstanciatedSeries(years_fitting, prod_values_historic, 'historic', 'lines') | ||
new_chart.series.append(serie) | ||
|
||
new_chart.to_plotly().show() | ||
|
||
capex_init, init_age_distrib_factor, learning_rate, opex_percentage, wacc = result.x[0:5] | ||
utilization_ratio = result.x[5:] | ||
parameters = ["capex_init", "init_age_distrib_factor", "learning_rate", "opex_percentage", "wacc"] | ||
opt_values = dict(zip(parameters, np.round(result.x, 3))) | ||
for key, val in opt_values.items(): | ||
print("Optimal", key, ":", val) | ||
print("Optimal utilization_ratio", utilization_ratio) | ||
|
||
disc = ee.dm.get_disciplines_with_name( | ||
f'{name}.{model_name}')[0] | ||
filters = disc.get_chart_filter_list() | ||
graph_list = disc.get_post_processing_list(filters) | ||
for graph in graph_list: | ||
graph.to_plotly().show() | ||
pass | ||
|
||
""" | ||
Results obtained: | ||
Function value at the optimum: 16826745.79920797 | ||
=> less than 6% error at max between model and historic production between 2015 and 2023 | ||
=> no error on the price | ||
Optimal capex_init : 222.638 | ||
Optimal init_age_distrib_factor : 1.0 | ||
Optimal learning_rate : 0.0 | ||
Optimal opex_percentage : 0.262 | ||
Optimal wacc : 0.058 | ||
Optimal utilization_ratio [100. 100. 100. 100. 100. 100.] | ||
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
years,growth_rate | ||
2023,1.0 | ||
2020,1.0 | ||
2023,1.13 | ||
2020,1.1 | ||
2015,1.1 | ||
1991,1.0 |
Oops, something went wrong.