Skip to content

Commit

Permalink
Correct examples
Browse files Browse the repository at this point in the history
Signed-off-by: Fanit Kolchina <[email protected]>
  • Loading branch information
kolchfa-aws committed Mar 28, 2024
1 parent 7e17012 commit b415378
Showing 1 changed file with 144 additions and 0 deletions.
144 changes: 144 additions & 0 deletions _automating-configurations/workflow-templates.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
---
layout: default
title: Workflow templates
nav_order: 25
---

# Workflow templates

OpenSearch provides several workflow templates for some common machine learning (ML) use cases, such as semantic or conversational search.

You can specify a workflow template when you call the [Create Workflow API]({{site.url}}{{site.baseurl}}/automating-configurations/api/create-workflow/). To provision the workflow, specify `provision=true` as a query parameter. For example, you can configure [neural sparse search]({{site.url}}{{site.baseurl}}/search-plugins/neural-sparse-search/) by using the `local_neural_sparse_search_bi_encoder` workflow template, as shown in the following request:

```json
POST /_plugins/_flow_framework/workflow?use_case=local_neural_sparse_search_bi_encoder
```
{% include copy-curl.html %}

The workflow created using this template performs the following configuration steps:

- Deploys the default pretrained sparse encoding model (`amazon/neural-sparse/opensearch-neural-sparse-encoding-v1`)
- Creates an ingest pipeline that contains a `sparse_encoding` processor, which converts the text in a document field to vector embeddings using the deployed model
- Creates a sample index for sparse search, specifying the default pipeline as the newly created ingest pipeline

## Parameters

Each workflow template has a defined schema and a set of APIs with predefined defaults for each step. For more information about template parameter default values, see [Supported workflow templates](#supported-workflow-templates).

### Overwriting default values

To overwrite the default values, provide the new values in the request body when sending a create workflow request. For example, the following request changes the Cohere model, the name of the `text_embedding` processor output field, and the name of the sparse index:

```json
POST /_plugins/_flow_framework/workflow?use_case=semantic_search_with_cohere_embedding
{
"create_connector.model" : "embed-multilingual-v3.0",
"text_embedding.field_map.output": "book_embedding",
"create_index.name": "sparse-book-index"
}
```
{% include copy-curl.html %}

## Example

In this example, you'll configure the `semantic_search_with_cohere_embedding` workflow template. The workflow created using this template performs the following configuration steps:

- Deploys a Cohere externally hosted model
- Creates an ingest pipeline using the model
- Creates a sample k-NN index and configures a search pipeline to define the default model ID for that index

### Step 1: Create and provision the workflow

Send the following request to create and provision a workflow using the `semantic_search_with_cohere_embedding` workflow template. The only required request body field for this template is the API key for the Cohere Embed model:

```json
POST /_plugins/_flow_framework/workflow?use_case=semantic_search_with_cohere_embedding&provision=true
{
"create_connector.credential.key" : "<YOUR API KEY>"
}
```
{% include copy-curl.html %}

OpenSearch responds with a workflow ID for the created workflow:

```json
{
"workflow_id" : "8xL8bowB8y25Tqfenm50"
}
```

The workflow in the previous step creates a default k-NN index. The default index name is `my-nlp-index`:

```json
{
"create_index.name": "my-nlp-index"
}
```

For all default parameter values for this workflow template, see [Cohere Embed semantic search defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/cohere-embedding-semantic-search-defaults.json).

### Step 2: Ingest documents into the index

To ingest documents into the index created in the previous step, send the following request:

```json
PUT /my-nlp-index/_doc/1
{
"passage_text": "Hello world",
"id": "s1"
}
```
{% include copy-curl.html %}

### Step 3: Perform vector search

To perform a vector search on your index, use a [`neural` query]({{site.url}}{{site.baseurl}}/query-dsl/specialized/neural/) clause:

```json
GET /my-nlp-index/_search
{
"_source": {
"excludes": [
"passage_embedding"
]
},
"query": {
"neural": {
"passage_embedding": {
"query_text": "Hi world",
"k": 100
}
}
}
}
```
{% include copy-curl.html %}

## Viewing workflow resources

The workflow you created provisioned all the necessary resources for semantic search. To view the provisioned resources, call the [Get Workflow Status API]({{site.url}}{{site.baseurl}}/automating-configurations/api/get-workflow-status/) and provide the `workflowID` for your workflow:

```json
GET /_plugins/_flow_framework/workflow/8xL8bowB8y25Tqfenm50/_status
```
{% include copy-curl.html %}

## Supported workflow templates

| Template name | Description | Required parameters | Defaults |
| `bedrock-titan-embedding_model_deploy` | Creates and deploys an Amazon Bedrock embedding model (by default, `titan-embed-text-v1`).| `create_connector.credential.access_key`, `create_connector.credential.secret_key`, `create_connector.credential.session_token` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/bedrock-titan-embedding-defaults.json)|
| `bedrock-titan-multimodal_model_deploy ` | Creates and deploys an Amazon Bedrock multimodal embedding model (by default, `titan-embed-image-v1`). | `create_connector.credential.access_key`, `create_connector.credential.secret_key`, `create_connector.credential.session_token` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/bedrock-titan-multimodal-defaults.json). |
| `cohere-embedding_model_deploy`| Creates and deploys a Cohere embedding model (by default, `embed-english-v3.0`). | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/cohere-embedding-defaults.json) |
| `cohere-chat_model_deploy` | Creates and deploys a Cohere chat model (by default, Cohere Command). | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/cohere-chat-defaults.json) |
| `open_ai_embedding_model_deploy` | Creates and deploys an OpenAI embedding model (by default, `text-embedding-ada-002`). | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/openai-embedding-defaults.json) |
| `openai-chat_model_deploy` | Creates and deploys an OpenAI chat model (by default, `gpt-3.5-turbo`). | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/openai-chat-defaults.json) |
| `local_neural_sparse_search_bi_encoder` | Configures [neural sparse search]({{site.url}}{{site.baseurl}}/search-plugins/neural-sparse-search/): <br> - Deploys a pretrained sparse encoding model<br> - Creates an ingest pipeline with a sparse encoding processor <br> - Creates a sample index to use for sparse search, specifying the newly created pipeline as default pipeline | None |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/local-sparse-search-biencoder-defaults.json) |
| `semantic_search` | Configures [semantic search]({{site.url}}{{site.baseurl}}/search-plugins/semantic-search/): <br> - Creates an ingest pipeline with a `text_embedding` processor and a k-NN index <br> You must provide a model ID of the text embedding model to use. | `create_ingest_pipeline.model_id` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/semantic-search-defaults.json) |
| `semantic_search_with_query_enricher` | Configures [semantic search]({{site.url}}{{site.baseurl}}/search-plugins/semantic-search/) similarly to the `semantic_search` template. Adds a [`query_enricher`]({{site.url}}{{site.baseurl}}/search-plugins/search-pipelines/neural-query-enricher/) search processor that sets a default model ID is defaulted for neural queries. You must provide a model ID of the text embedding model to use. | `create_ingest_pipeline.model_id` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/semantic-search-query-enricher-defaults.json) |
| `semantic_search_with_cohere_embedding` | Configures [semantic search]({{site.url}}{{site.baseurl}}/search-plugins/semantic-search/) and deploys a Cohere embedding model. Adds a [`query_enricher`]({{site.url}}{{site.baseurl}}/search-plugins/search-pipelines/neural-query-enricher/) search processor that sets a default model ID is defaulted for neural queries. You must provide the API key for the Cohere model. | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/cohere-embedding-semantic-search-defaults.json) |
| `multi_modal_search` | Configures an ingest pipeline with a `text_image_embedding` processor and a k-NN index for [multimodal search]({{site.url}}{{site.baseurl}}/search-plugins/multimodal-search/). You must provide a model ID of the multimodal embedding model to use. | `create_ingest_pipeline.model_id` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/multi-modal-search-defaults.json) |
| `multi_modal_search_with_bedrock_titan_multi_modal` | Deploys an Amazon Bedrock multimodal model and configures an ingest pipeline with a `text_image_embedding` processor and a k-NN index for [multimodal search]({{site.url}}{{site.baseurl}}/search-plugins/multimodal-search/). You must provide your AWS credentials. | `create_connector.credential.access_key`, `create_connector.credential.secret_key`, `create_connector.credential.session_token` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/multimodal-search-bedrock-titan-defaults.json) |
| `hybrid_search` | Configures [hybrid search]({{site.url}}{{site.baseurl}}/search-plugins/hybrid-search/): <br> - Creates an ingest pipeline, a k-NN index and a search pipeline with a `normalization_processor`. You must provide a model ID of the text embedding model to use. | `create_ingest_pipeline.model_id` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/hybrid-search-defaults.json) |
| `conversational_search_with_llm_deploy` | Deploys an LLM model (by default, Cohere Chat) and configures a search pipeline with a `retrieval_augmented_generation` processor for [conversational search]({{site.url}}{{site.baseurl}}/search-plugins/conversational-search/). | `create_connector.credential.key` |[Defaults](https://github.com/opensearch-project/flow-framework/blob/2.13/src/main/resources/defaults/conversational-search-defaults.json) |


0 comments on commit b415378

Please sign in to comment.