Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added three negative control methods #8

Merged
merged 2 commits into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,11 @@

* Added `methods/limma_remove_batch_effect` component (PR #7).

* Added three negative control methods (PR #8):
- `control_methods/shuffle_integration`
- `control_methods/shuffle_integration_by_batch`
- `control_methods/shuffle_integration_by_cell_type`

## MAJOR CHANGES

## MINOR CHANGES
Expand Down
17 changes: 17 additions & 0 deletions src/control_methods/shuffle_integration/config.vsh.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
__merge__: /src/api/comp_control_method.yaml
name: shuffle_integration
label: Shuffle integration
summary: Integrations are randomly permuted
description: Integrations are randomly permuted
resources:
- type: python_script
path: script.py
- path: /src/control_methods/utils.py
engines:
- type: docker
image: openproblems/base_python:1.0.0
runners:
- type: executable
- type: nextflow
directives:
label: [midtime, midmem, lowcpu]
43 changes: 43 additions & 0 deletions src/control_methods/shuffle_integration/script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import anndata as ad
import sys

## VIASH START
par = {
"input_unintegrated": "resources_test/task_cyto_batch_integration/starter_file/unintegrated_censored.h5ad",
"output": "output.h5ad",
}
meta = {"name": "harmonypy"}
## VIASH END

print("Importing helper functions", flush=True)
sys.path.append(meta["resources_dir"])
from utils import _randomize_features

print("Reading and preparing input files", flush=True)
adata = ad.read_h5ad(par["input_unintegrated"])

adata.obs["batch_str"] = adata.obs["batch"].astype(str)

markers_to_correct = adata.var[adata.var["to_correct"]].index.to_numpy()

adata = adata[:, markers_to_correct]

print("Randomise features", flush=True)
integrated = _randomize_features(
adata.layers["preprocessed"]
)

# create new anndata
output = ad.AnnData(
obs=adata.obs[[]],
var=adata.var[[]],
layers={"integrated": integrated},
uns={
"dataset_id": adata.uns["dataset_id"],
"method_id": meta["name"],
"parameters": {},
},
)

print("Write output AnnData to file", flush=True)
output.write_h5ad(par["output"], compression="gzip")
17 changes: 17 additions & 0 deletions src/control_methods/shuffle_integration_by_batch/config.vsh.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
__merge__: /src/api/comp_control_method.yaml
name: shuffle_integration_by_batch
label: Shuffle integration by batch
summary: Integrations are randomly permuted within each batch
description: Integrations are randomly permuted within each batch
resources:
- type: python_script
path: script.py
- path: /src/control_methods/utils.py
engines:
- type: docker
image: openproblems/base_python:1.0.0
runners:
- type: executable
- type: nextflow
directives:
label: [midtime, midmem, lowcpu]
44 changes: 44 additions & 0 deletions src/control_methods/shuffle_integration_by_batch/script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import anndata as ad
import sys

## VIASH START
par = {
"input_unintegrated": "resources_test/task_cyto_batch_integration/starter_file/unintegrated_censored.h5ad",
"output": "output.h5ad",
}
meta = {"name": "harmonypy"}
## VIASH END

print("Importing helper functions", flush=True)
sys.path.append(meta["resources_dir"])
from utils import _randomize_features

print("Reading and preparing input files", flush=True)
adata = ad.read_h5ad(par["input_unintegrated"])

adata.obs["batch_str"] = adata.obs["batch"].astype(str)

markers_to_correct = adata.var[adata.var["to_correct"]].index.to_numpy()

adata = adata[:, markers_to_correct]

print("Randomise features", flush=True)
integrated = _randomize_features(
adata.layers["preprocessed"],
partition=adata.obs["batch"],
)

# create new anndata
output = ad.AnnData(
obs=adata.obs[[]],
var=adata.var[[]],
layers={"integrated": integrated},
uns={
"dataset_id": adata.uns["dataset_id"],
"method_id": meta["name"],
"parameters": {},
},
)

print("Write output AnnData to file", flush=True)
output.write_h5ad(par["output"], compression="gzip")
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
__merge__: /src/api/comp_control_method.yaml
name: shuffle_integration_by_cell_type
label: Shuffle integration by cell type
summary: Integrations are randomly permuted within each cell type
description: Integrations are randomly permuted within each cell type
resources:
- type: python_script
path: script.py
- path: /src/control_methods/utils.py
engines:
- type: docker
image: openproblems/base_python:1.0.0
runners:
- type: executable
- type: nextflow
directives:
label: [midtime, midmem, lowcpu]
44 changes: 44 additions & 0 deletions src/control_methods/shuffle_integration_by_cell_type/script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import anndata as ad
import sys

## VIASH START
par = {
"input_unintegrated": "resources_test/task_cyto_batch_integration/starter_file/unintegrated_censored.h5ad",
"output": "output.h5ad",
}
meta = {"name": "harmonypy"}
## VIASH END

print("Importing helper functions", flush=True)
sys.path.append(meta["resources_dir"])
from utils import _randomize_features

print("Reading and preparing input files", flush=True)
adata = ad.read_h5ad(par["input_unintegrated"])

adata.obs["batch_str"] = adata.obs["batch"].astype(str)

markers_to_correct = adata.var[adata.var["to_correct"]].index.to_numpy()

adata = adata[:, markers_to_correct]

print("Randomise features", flush=True)
integrated = _randomize_features(
adata.layers["preprocessed"],
partition=adata.obs["cell_type"],
)

# create new anndata
output = ad.AnnData(
obs=adata.obs[[]],
var=adata.var[[]],
layers={"integrated": integrated},
uns={
"dataset_id": adata.uns["dataset_id"],
"method_id": meta["name"],
"parameters": {},
},
)

print("Write output AnnData to file", flush=True)
output.write_h5ad(par["output"], compression="gzip")
16 changes: 16 additions & 0 deletions src/control_methods/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
import numpy as np

def _randomize_features(X, partition=None):
"""
Taken and adapted from opsca-v1:
https://github.com/openproblems-bio/openproblems/blob/acf5c95a7306b819c4a13972783433d0a48f769b/openproblems/tasks/_batch_integration/_common/methods/baseline.py#L13
"""
X_out = X.copy()
if partition is None:
partition = np.full(X.shape[0], 0)
else:
partition = np.asarray(partition)
for partition_name in np.unique(partition):
partition_idx = np.argwhere(partition == partition_name).flatten()
X_out[partition_idx] = X[np.random.permutation(partition_idx)]
return X_out
Loading