Skip to content

Commit

Permalink
[Feature] update needlebench and configs (#986)
Browse files Browse the repository at this point in the history
* add Needlebench-1000K configs

* add prompt postion args

* add model configs

* Update parallel.py

* fix lint
  • Loading branch information
Mor-Li authored Mar 25, 2024
1 parent 0665bb9 commit 0a6a03f
Show file tree
Hide file tree
Showing 14 changed files with 831 additions and 38 deletions.
1 change: 1 addition & 0 deletions configs/datasets/needlebench/needlebench.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,5 +6,6 @@
from .needlebench_32k.needlebench import needlebench_datasets as needlebench_datasets_32k
from .needlebench_128k.needlebench import needlebench_datasets as needlebench_datasets_128k
from .needlebench_200k.needlebench import needlebench_datasets as needlebench_datasets_200k
from .needlebench_1000k.needlebench import needlebench_datasets as needlebench_datasets_1000k

needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
18 changes: 18 additions & 0 deletions configs/datasets/needlebench/needlebench_1000k/needlebench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from mmengine.config import read_base

with read_base():
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets

from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets

needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
from opencompass.datasets.needlebench.origin import needlebench_postprocess
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
import math


def logistic(x, L=100, x0=50, k=0.1):
return round(L / (1 + math.exp(-k * (x - x0))), 3)


def generate_linear_space(start, end, num):
if num == 1:
return [start]
elif num < 1:
raise ValueError("num must be at least 1.")
step = (end - start) / (num - 1)
return [start + step * i for i in range(num)]


def generate_depth_percents(intervals, interval_type):
if interval_type == 'linear':
return generate_linear_space(0, 100, intervals)
elif interval_type == 'sigmoid':
linear_space = generate_linear_space(0, 100, intervals)
return [logistic(x) for x in linear_space]
else:
raise ValueError('Unsupported interval type')


needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')

needlebench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))

needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')

context_lengths = [20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]

# ----------English Version----------
base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl']

needle_file_name = 'multi_needle_reasoning_en.json'
diff = 10
num_needles = 2
needlebench_datasets_2needle_en = []
language = 'English'

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 600,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_2needle_en.append(dataset_dict)

num_needles = 3
needlebench_datasets_3needle_en = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 600,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_3needle_en.append(dataset_dict)

num_needles = 4
needlebench_datasets_4needle_en = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 600,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_4needle_en.append(dataset_dict)

num_needles = 5
needlebench_datasets_5needle_en = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 600,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_5needle_en.append(dataset_dict)

# ----------Chinese Version----------
base_path = './data/needlebench'
file_list = ['zh_finance.jsonl']

needle_file_name = 'multi_needle_reasoning_zh.json'
diff = 10
num_needles = 2
needlebench_datasets_2needle_zh = []
language = 'Chinese'

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_2needle_zh.append(dataset_dict)

num_needles = 3
needlebench_datasets_3needle_zh = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_3needle_zh.append(dataset_dict)

num_needles = 4
needlebench_datasets_4needle_zh = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_4needle_zh.append(dataset_dict)

num_needles = 5
needlebench_datasets_5needle_zh = []

for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': language,
'needle_file_name': needle_file_name,
'num_needles': num_needles,
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
}
needlebench_datasets_5needle_zh.append(dataset_dict)
Loading

0 comments on commit 0a6a03f

Please sign in to comment.