-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
229 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,3 +17,4 @@ SEAL | |
*.dot | ||
*.csv | ||
*.out | ||
GPU-MPC/experiments/sigma/sigma_offline_online |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
// Author: Neha Jawalkar,Tanmay Rajore | ||
// Copyright: | ||
// | ||
// Copyright (c) 2024 Microsoft Research | ||
// | ||
// Permission is hereby granted, free of charge, to any person obtaining a copy | ||
// of this software and associated documentation files (the "Software"), to deal | ||
// in the Software without restriction, including without limitation the rights | ||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
// copies of the Software, and to permit persons to whom the Software is | ||
// furnished to do so, subject to the following conditions: | ||
// The above copyright notice and this permission notice shall be included in all | ||
// copies or substantial portions of the Software. | ||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
// SOFTWARE. | ||
|
||
#include <sytorch/module.h> | ||
#include "gpt2.h" | ||
#include "bert.h" | ||
#include "llama2.h" | ||
#include "backend/sigma.h" | ||
|
||
inline std::string toGB(u64 bytes) { | ||
return std::to_string(bytes) + " B (" + std::to_string((float) bytes / (1024.0f * 1024.0f * 1024.0f)) + " GB)"; | ||
} | ||
|
||
int main(int __argc, char **__argv) | ||
{ | ||
sytorch_init(); | ||
|
||
u64 n_embd = 0; | ||
u64 n_head = 0; | ||
u64 n_layer = 0; | ||
std::string attnMask = "none"; | ||
std::string qkvFormat = "qkvconcat"; | ||
int bw = 0; | ||
u64 scale = 12; | ||
u64 n_seq = atoi(__argv[2]); | ||
int role = atoi(__argv[3]); | ||
int party = atoi(__argv[4]); | ||
|
||
std::string model(__argv[1]); | ||
printf("Model=%s\n", model.data()); | ||
std::string keyDir(__argv[5]); | ||
auto keyFile = keyDir + model + "_inference_key"; | ||
u64 keyBufSz = 0; | ||
SytorchModule<u64> *net; | ||
|
||
if (model == "gpt2") | ||
{ | ||
n_layer = 12; | ||
n_head = 12; | ||
n_embd = 768; | ||
attnMask = "self"; | ||
bw = 50; | ||
keyBufSz = 20 * OneGB; | ||
net = new GPUGPT2<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat); | ||
} | ||
else if (model == "bert-tiny") | ||
{ | ||
n_layer = 2; | ||
n_head = 2; | ||
n_embd = 128; | ||
bw = 37; | ||
keyBufSz = OneGB; | ||
net = new GPUBERT<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat); | ||
} | ||
else if (model == "bert-base") | ||
{ | ||
n_layer = 12; | ||
n_head = 12; | ||
n_embd = 768; | ||
bw = 50; | ||
keyBufSz = 70 * OneGB; | ||
net = new GPUBERT<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat); | ||
} | ||
else if (model == "bert-large") | ||
{ | ||
n_layer = 24; | ||
n_head = 16; | ||
n_embd = 1024; | ||
bw = 50; | ||
keyBufSz = 50 * OneGB; | ||
net = new GPUBERT<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat); | ||
} | ||
else if (model == "gpt-neo") | ||
{ | ||
n_layer = 24; | ||
n_head = 16; | ||
n_embd = 2048; | ||
attnMask = "self"; | ||
qkvFormat = "kvqsep"; | ||
bw = 51; | ||
keyBufSz = 80 * OneGB; | ||
net = new GPUGPT2<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat, false); | ||
} | ||
else if (model == "gpt-neo-large") | ||
{ | ||
n_layer = 32; | ||
n_head = 20; | ||
n_embd = 2560; | ||
attnMask = "self"; | ||
qkvFormat = "concat"; | ||
bw = 51; // 52; | ||
keyBufSz = 200 * OneGB; | ||
net = new GPUGPT2<u64>(n_layer, n_head, n_embd, attnMask, qkvFormat, false); | ||
} | ||
else if (model == "llama7b") | ||
{ | ||
n_layer = 32; | ||
n_head = 32; | ||
n_embd = 4096; | ||
attnMask = "self"; | ||
qkvFormat = "qkvsep"; | ||
bw = 48; | ||
u64 intermediate_size = 11008; | ||
keyBufSz = 500 * OneGB; | ||
net = new GPULlama<u64>(n_layer, n_head, n_embd, intermediate_size); | ||
} | ||
else if (model == "llama13b") | ||
{ | ||
n_layer = 40; | ||
n_head = 40; | ||
n_embd = 5120; | ||
attnMask = "self"; | ||
qkvFormat = "qkvsep"; | ||
bw = 48; | ||
u64 intermediate_size = 13824; | ||
keyBufSz = 450 * OneGB; | ||
net = new GPULlama<u64>(n_layer, n_head, n_embd, intermediate_size); | ||
} | ||
else if (model == "airavata") | ||
{ | ||
n_layer = 32; | ||
n_head = 32; | ||
n_embd = 4096; | ||
attnMask = "self"; | ||
qkvFormat = "qkvsep"; | ||
bw = 48; | ||
u64 intermediate_size = 11008; | ||
keyBufSz = 500 * OneGB; | ||
net = new GPULlama<u64>(n_layer, n_head, n_embd, intermediate_size,false); | ||
} | ||
else | ||
{ | ||
printf("Invalid model\n"); | ||
return 1; | ||
} | ||
|
||
Tensor<u64> input({n_seq, n_embd}); | ||
net->init(scale, input); | ||
srand(time(NULL)); | ||
|
||
if (role == 0) | ||
{ | ||
auto sigma = new SIGMAKeygen<u64>(party, bw, scale, keyFile, keyBufSz); | ||
net->setBackend(sigma); | ||
net->optimize(); | ||
input.d_data = (u64 *)moveToGPU((u8 *)input.data, input.size() * sizeof(u64), (Stats *)NULL); | ||
auto &activation = net->forward(input); | ||
sigma->output(activation); | ||
sigma->close(); | ||
} | ||
else | ||
{ | ||
std::string ip(__argv[6]); | ||
auto sigma = new SIGMA<u64>(party, ip, keyFile, bw, scale, n_seq, n_embd, atoi(__argv[7])); | ||
net->setBackend(sigma); | ||
net->optimize(); | ||
sigma->peer->sync(); | ||
auto start = std::chrono::high_resolution_clock::now(); | ||
input.d_data = (u64 *)moveToGPU((u8 *)input.data, input.size() * sizeof(u64), (Stats *)NULL); | ||
auto &activation = net->forward(input); | ||
sigma->output(activation); | ||
auto end = std::chrono::high_resolution_clock::now(); | ||
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end - start); | ||
sigma->close(); | ||
|
||
std::stringstream ss; | ||
|
||
ss << "Time in ms" << std::endl; | ||
ss << "Total time=" + std::to_string(elapsed.count()); | ||
ss << std::endl; | ||
ss << "Comm time=" + std::to_string(sigma->s.comm_time); | ||
ss << std::endl; | ||
ss << "Transfer time=" + std::to_string(sigma->s.transfer_time); | ||
ss << std::endl; | ||
ss << "MHA time=" + std::to_string(sigma->s.mha_time); | ||
ss << std::endl; | ||
ss << "Matmul time=" + std::to_string(sigma->s.matmul_time); | ||
ss << std::endl; | ||
ss << "Truncate time=" + std::to_string(sigma->s.truncate_time); | ||
ss << std::endl; | ||
ss << "Gelu time=" + std::to_string(sigma->s.gelu_time); | ||
ss << std::endl; | ||
ss << "Softmax time=" + std::to_string(sigma->s.softmax_time); | ||
ss << std::endl; | ||
ss << "Layernorm time=" + std::to_string(sigma->s.layernorm_time); | ||
ss << std::endl; | ||
ss << std::endl; | ||
ss << "Total Comm=" + toGB(sigma->peer->bytesSent() + sigma->peer->bytesReceived()); | ||
ss << std::endl; | ||
ss << "Gelu Comm=" + toGB(sigma->s.gelu_comm_bytes); | ||
ss << std::endl; | ||
ss << "Softmax Comm=" + toGB(sigma->s.softmax_comm_bytes); | ||
ss << std::endl; | ||
ss << "Layernorm Comm=" + toGB(sigma->s.layernorm_comm_bytes); | ||
ss << std::endl; | ||
|
||
auto inferenceDir = "output/P" + std::to_string(party) + "/"; | ||
std::ofstream statsFile(inferenceDir + model + ".txt"); | ||
statsFile << ss.rdbuf(); | ||
statsFile.close(); | ||
} | ||
return 0; | ||
} |