Skip to content

Evaluation for all classification tasks among CCMUSIC

License

Notifications You must be signed in to change notification settings

monetjoe/ccmusic_eval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Evaluation Framework for CCMusic Database Classification Tasks

License: MIT Python application hf ms

Classify spectrograms by fine-tuned pre-trained CNN models.

Download

git clone [email protected]:monetjoe/ccmusic_eval.git
cd ccmusic_eval

Environment

conda create -n py311 python=3.11 -y
conda activate py311
pip install -r requirements.txt

Usage

python train.py --ds ccmusic-database/bel_canto --subset eval --data cqt --label singing_method --model squeezenet1_1 --wce True --mode 0

Help

Args Notes Options Type
--ds The dataset on ModelScope to be evaluated For examples: ccmusic-database/CNPM, ccmusic-database/bel_canto string
--subset The subset of the dataset For examples: default, eval string
--data Input data colum of the dataset For examples: mel, cqt, chroma string
--label Label colum of the dataset For examples: label, singing_method, gender string
--model Select a CV backbone to train Supported backbones string
--imgnet ImageNet version the backbone was pretrained on v1, v2 string
--mode Training mode ID 0=linear_probe, 1=full_finetune, 2=no_pretrain int
--bsz Batch size For examples: 1, 2, 4, 8, 16, 32, 64, 128..., default is 4 int
--eps Epoch number Default is 40 int
--wce Whether to use weighted cross entropy False, True bool

Fixed Hyper Params

Param Value Range
iteration 10 train
lr 0.001 optimizer
momentum 0.9 optimizer
optimizer SGD scheduler
mode min scheduler
factor 0.1 scheduler
patience 5 scheduler
verbose True scheduler
threshold lr scheduler
threshold_mode rel scheduler
cooldown 0 scheduler
min_lr 0 scheduler
eps 1e-08 scheduler

Cite

@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}

About

Evaluation for all classification tasks among CCMUSIC

Resources

License

Stars

Watchers

Forks

Languages