Skip to content

Official PyTorch implementation of "I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image", ECCV 2020

License

Notifications You must be signed in to change notification settings

mks0601/I2L-MeshNet_RELEASE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image

News

There was a code mistake in here. Basically, the translation during the rigid alignment was wrong. The results in my paper became better after I fix the error.

Introduction

This repo is official PyTorch implementation of I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image (ECCV 2020). Our I2L-MeshNet wons the first and second place at 3DPW challenge on unknown assocation track in part orientation and joint position metrics, respectively.:tada:

Quick demo

  • Install PyTorch and Python >= 3.7.3 and run sh requirements.sh. You should slightly change torchgeometry kernel code following here.
  • Download the pre-trained I2L-MeshNet from here. This is not the best accurate I2L-MeshNet, but provides visually smooth meshes. Here is discussion about this.
  • Prepare input.jpg and pre-trained snapshot at demo folder.
  • Download basicModel_f_lbs_10_207_0_v1.0.0.pkl and basicModel_m_lbs_10_207_0_v1.0.0.pkl from here and basicModel_neutral_lbs_10_207_0_v1.0.0.pkl from here. Place them at common/utils/smplpytorch/smplpytorch/native/models.
  • Go to demo folder and edit bbox in here.
  • run python demo.py --gpu 0 --stage param --test_epoch 8 if you want to run on gpu 0.
  • You can see output_mesh_lixel.jpg, output_mesh_param.jpg, rendered_mesh_lixel.jpg, rendered_mesh_param.jpg, output_mesh_lixel.obj, and output_mesh_param.obj. *_lixel.* are from lixel-based 1D heatmap of mesh vertices and *_param.* are from regressed SMPL parameters.
  • If you run this code in ssh environment without display device, do follow:
1、Install oemesa follow https://pyrender.readthedocs.io/en/latest/install/
2、Reinstall the specific pyopengl fork: https://github.com/mmatl/pyopengl
3、Set opengl's backend to egl or osmesa via os.environ["PYOPENGL_PLATFORM"] = "egl"

Directory

Root

The ${ROOT} is described as below.

${ROOT}  
|-- data  
|-- demo
|-- common  
|-- main  
|-- output  
  • data contains data loading codes and soft links to images and annotations directories.
  • demo contains demo codes.
  • common contains kernel codes for I2L-MeshNet.
  • main contains high-level codes for training or testing the network.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${ROOT}  
|-- data  
|   |-- Human36M  
|   |-- |-- rootnet_output  
|   |   |   |-- bbox_root_human36m_output.json  
|   |   |-- images  
|   |   |-- annotations   
|   |   |-- J_regressor_h36m_correct.npy
|   |-- MuCo  
|   |   |-- data  
|   |   |   |-- augmented_set  
|   |   |   |-- unaugmented_set  
|   |   |   |-- MuCo-3DHP.json
|   |   |   |-- smpl_param.json
|   |-- MSCOCO  
|   |   |-- rootnet_output  
|   |   |   |-- bbox_root_coco_output.json  
|   |   |-- images  
|   |   |   |-- train2017  
|   |   |   |-- val2017  
|   |   |-- annotations  
|   |   |-- J_regressor_coco_hip_smpl.npy
|   |-- PW3D
|   |   |-- rootnet_output  
|   |   |   |-- bbox_root_pw3d_output.json  
|   |   |-- data
|   |   |   |-- 3DPW_train.json
|   |   |   |-- 3DPW_validation.json
|   |   |   |-- 3DPW_test.json
|   |   |-- imageFiles
|   |-- FreiHAND
|   |   |-- rootnet_output  
|   |   |   |-- bbox_root_freihand_output.json  
|   |   |-- data
|   |   |   |-- training
|   |   |   |-- evaluation
|   |   |   |-- freihand_train_coco.json
|   |   |   |-- freihand_train_data.json
|   |   |   |-- freihand_eval_coco.json
|   |   |   |-- freihand_eval_data.json

To download multiple files from Google drive without compressing them, try this. If you have a problem with 'Download limit' problem when tried to download dataset from google drive link, please try this trick.

* Go the shared folder, which contains files you want to copy to your drive  
* Select all the files you want to copy  
* In the upper right corner click on three vertical dots and select “make a copy”  
* Then, the file is copied to your personal google drive account. You can download it from your personal account.  

Pytorch SMPL and MANO layer

  • For the SMPL layer, I used smplpytorch. The repo is already included in common/utils/smplpytorch.
  • Download basicModel_f_lbs_10_207_0_v1.0.0.pkl and basicModel_m_lbs_10_207_0_v1.0.0.pkl from here and basicModel_neutral_lbs_10_207_0_v1.0.0.pkl from here. Place them at common/utils/smplpytorch/smplpytorch/native/models.
  • For the MANO layer, I used manopth. The repo is already included in common/utils/manopth.
  • Download MANO_RIGHT.pkl from here at common/utils/manopth/mano/models.

Output

You need to follow the directory structure of the output folder as below.

${ROOT}  
|-- output  
|   |-- log  
|   |-- model_dump  
|   |-- result  
|   |-- vis  
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

Running I2L-MeshNet

Start

  • Install PyTorch and Python >= 3.7.3 and run sh requirements.sh. You should slightly change torchgeometry kernel code following here.
  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.
  • There are two stages. 1) lixel and 2) param. In the lixel stage, I2L-MeshNet predicts lixel-based 1D heatmaps for each human joint and mesh vertex. In param stage, I2L-MeshNet predicts SMPL parameters from lixel-based 1D heatmaps.

Train

1. lixel stage

First, you need to train I2L-MeshNet of lixel stage. In the main folder, run

python train.py --gpu 0-3 --stage lixel 

to train I2L-MeshNet in the lixel stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

2. param stage

Once you pre-trained I2L-MeshNet in lixel stage, you can resume training in param stage. In the main folder, run

python train.py --gpu 0-3 --stage param --continue

to train I2L-MeshNet in the param stage on the GPU 0,1,2,3. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Test

Place trained model at the output/model_dump/. Choose the stage you want to test among lixel and param.

In the main folder, run

python test.py --gpu 0-3 --stage $STAGE --test_epoch 20  

to test I2L-MeshNet in $STAGE stage (should be one of lixel and param) on the GPU 0,1,2,3 with 20th epoch trained model. --gpu 0,1,2,3 can be used instead of --gpu 0-3.

Results

Here I report the performance of the I2L-MeshNet.

Human3.6M dataset

$ python test.py --gpu 4-7 --stage param --test_epoch 17
>>> Using GPU: 4,5,6,7
Stage: param
08-10 00:25:56 Creating dataset...
creating index...
index created!
Get bounding box and root from ../data/Human36M/rootnet_output/bbox_root_human36m_output.json
08-10 00:26:16 Load checkpoint from ../output/model_dump/snapshot_17.pth.tar
08-10 00:26:16 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 35/35 [00:46<00:00,  1.09it/s]
MPJPE from lixel mesh: 55.83 mm
PA MPJPE from lixel mesh: 41.10 mm
MPJPE from param mesh: 66.05 mm
PA MPJPE from param mesh: 45.03 mm

3DPW dataset

$ python test.py --gpu 4-7 --stage param --test_epoch 7
>>> Using GPU: 4,5,6,7
Stage: param
08-09 20:47:19 Creating dataset...
loading annotations into memory...
Done (t=4.91s)
creating index...
index created!
Get bounding box and root from ../data/PW3D/rootnet_output/bbox_root_pw3d_output.json
08-09 20:47:27 Load checkpoint from ../output/model_dump/snapshot_7.pth.tar
08-09 20:47:27 Creating graph...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 555/555 [08:05<00:00,  1.06s/it]
MPJPE from lixel mesh: 93.15 mm
PA MPJPE from lixel mesh: 57.73 mm
MPJPE from param mesh: 100.04 mm
PA MPJPE from param mesh: 60.04 mm

MSCOCO dataset

The testing results on MSCOCO dataset are used for visualization (qualitative results).

$ python test.py --gpu 4-7 --stage param --test_epoch 7
>>> Using GPU: 4,5,6,7
Stage: param
08-10 00:34:26 Creating dataset...
loading annotations into memory...
Done (t=0.35s)
creating index...
index created!
Load RootNet output from  ../data/MSCOCO/rootnet_output/bbox_root_coco_output.json
08-10 00:34:39 Load checkpoint from ../output/model_dump/snapshot_7.pth.tar
08-10 00:34:39 Creating graph...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 100/100 [01:31<00:00,  1.05it/s]

FreiHAND dataset

$ python test.py --gpu 4-7 --stage lixel --test_epoch 24
>>> Using GPU: 4,5,6,7
Stage: lixel
08-09 21:31:30 Creating dataset...
loading annotations into memory...
Done (t=0.06s)
creating index...
index created!
Get bounding box and root from ../data/FreiHAND/rootnet_output/bbox_root_freihand_output.json
08-09 21:31:30 Load checkpoint from ../output/model_dump/snapshot_24.pth.tar
08-09 21:31:30 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 62/62 [00:54<00:00,  1.12it/s]
Saved at ../output/result/pred.json

I2L-MeshNet for mesh visualization

loss['joint_orig'] and loss['mesh_joint_orig'] in main/model.py makes the lixel-based meshes visually not smooth but 3D pose from meshes more accurate. This is because the loss functions are calculated from joint coordinates of each dataset, not from SMPL joint set. Thus, for the visually pleasant lixel-based meshes, disable the two loss functions when training.

$ python test.py --gpu 4 --stage param --test_epoch 8
>>> Using GPU: 4
Stage: param
08-16 13:56:54 Creating dataset...
loading annotations into memory...
Done (t=7.05s)
creating index...
index created!
Get bounding box and root from ../data/PW3D/rootnet_output/bbox_root_pw3d_output.json
08-16 13:57:04 Load checkpoint from ../output/model_dump/snapshot_8.pth.tar
08-16 13:57:04 Creating graph...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8879/8879 [17:42<00:00,  3.58it/s]
MPJPE from lixel mesh: 93.47 mm
PA MPJPE from lixel mesh: 60.87 mm
MPJPE from param mesh: 99.34 mm
PA MPJPE from param mesh: 61.80 mm

Troubleshoots

  • RuntimeError: Subtraction, the '-' operator, with a bool tensor is not supported. If you are trying to invert a mask, use the '~' or 'logical_not()' operator instead.: Go to here

Reference

@InProceedings{Moon_2020_ECCV_I2L-MeshNet,  
author = {Moon, Gyeongsik and Lee, Kyoung Mu},  
title = {I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image},  
booktitle = {European Conference on Computer Vision (ECCV)},  
year = {2020}  
}  

About

Official PyTorch implementation of "I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image", ECCV 2020

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published