Skip to content

Compute the MOID - Minimum Orbit Intersection Distance for two given elliptical orbits (Kepler elements)

License

Notifications You must be signed in to change notification settings

mkretlow/MOID.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOID.jl Build Status

Compute the MOID - Minimum Orbit Intersection Distance for two given confocal, elliptical orbits. It uses the idea of rotating meridional plane and calculates the MOIDs numerically.

The method is described in the paper:

T.Wiśniowski and H.Rickman, "A Fast, Geometric Method for Calculating Accurate Minimum Orbit Intersection Distances (MOIDs)", Acta Astronomica, Vol. 63 (2013) pp. 293–307. The paper and the original Fortran source code are provided here in the docs subdir.

Install

pkg> add "https://github.com/mkretlow/MOID.jl.git"

Quickstart

julia> using MOID

# Calculate the MOID between asteroids (1) Ceres and (30) Urania. Argument values are: 
# semi-major axis (au), eccentricity, argument of perhielion (ω), longitude of ascending node (Ω),
# inclination (i) (all angles in rad). Result is MOID in au.

julia> rad = pi/180
julia> ceres = [2.7691652, 0.0760091, 73.59764*rad, 80.30553*rad, 10.59407*rad]
julia> urania = [2.3655722, 0.127581 , 87.42605*rad, 307.46872*rad, 2.09575*rad]
julia> wisric_moid(ceres...,urania...)
0.24521440655831886

About

Compute the MOID - Minimum Orbit Intersection Distance for two given elliptical orbits (Kepler elements)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages