Skip to content

Commit

Permalink
Add unit tests for multiply_distributions()
Browse files Browse the repository at this point in the history
  • Loading branch information
mhostetter committed Jul 28, 2024
1 parent e7e973c commit d4fb50a
Showing 1 changed file with 60 additions and 0 deletions.
60 changes: 60 additions & 0 deletions tests/probability/test_multiply_distribution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import numpy as np
import scipy.stats

import sdr


def test_normal_normal():
X = scipy.stats.norm(loc=3, scale=0.5)
Y = scipy.stats.norm(loc=5, scale=1.5)
_verify(X, Y)


def test_rayleigh_rayleigh():
X = scipy.stats.rayleigh(scale=1)
Y = scipy.stats.rayleigh(loc=1, scale=2)
_verify(X, Y)


def test_rician_rician():
X = scipy.stats.rice(2)
Y = scipy.stats.rice(3)
_verify(X, Y)


def test_normal_rayleigh():
X = scipy.stats.norm(loc=-1, scale=0.5)
Y = scipy.stats.rayleigh(loc=2, scale=1.5)
_verify(X, Y)


def test_rayleigh_rician():
X = scipy.stats.rayleigh(scale=1)
Y = scipy.stats.rice(3)
_verify(X, Y)


def _verify(X, Y):
# Empirically compute the distribution
z = X.rvs(250_000) * Y.rvs(250_000)
hist, bins = np.histogram(z, bins=51, density=True)
x = bins[1:] - np.diff(bins) / 2

# Numerically compute the distribution, only do so over the histogram bins (for speed)
Z = sdr.multiply_distributions(X, Y, x)

if True:
import matplotlib.pyplot as plt

plt.figure()
plt.plot(x, X.pdf(x), label="X")
plt.plot(x, Y.pdf(x), label="Y")
plt.plot(x, Z.pdf(x), label="X * Y")
plt.hist(z, bins=51, cumulative=False, density=True, histtype="step", label="X * Y empirical")
plt.legend()
plt.xlabel("Random variable")
plt.ylabel("Probability density")
plt.title("Product of two distributions")
plt.show()

assert np.allclose(Z.pdf(x), hist, atol=np.max(hist) * 0.1)

0 comments on commit d4fb50a

Please sign in to comment.