Skip to content

matrixhaolin/iNaturalist_resnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

iNaturalist Challenge(2018) with resnet

Introduction

This release focuses on AI based graphic classification. We train resnet(152/101/50 layers) for iNaturalist Challenge at FGVC 2018 with tensorpack, which is a training interface based on TensorFlow.

Result

On inaturalist-2018 Dataset, we train resnet(50/101/152) respectively,the result is as follows:

Model Name train-error-top1 train-error-top3 val-error-top1 val-error-top3
Resnet50 0.13361 0.061188 0.399 0.24171
Resnet101 0.105 0.061306 0.37014 0.21371
Resnet152 0.11464 0.059394 0.35454 0.20024

Installation, Data Preparation, Training and Testing

Disclaimer

  • The code is tested on a server with 188.00 GB memory, and 40 core cpu. Data storages in SSD.
  • we train the model with 8 Pascal Titian XP gpu, for resnet50 the batch is 32*8=256, for resnet101/152 the batch is 24*8=192

Install

Dependencies:

  • python3. We recommend using Anaconda as it already includes many common packages.
  • Python bindings for OpenCV (Optional, but required by a lot of features)
  • TensorFlow >= 1.3.0 (Optional if you only want to use tensorpack.dataflow alone as a data processing library)
# install git, then:
pip install -U git+https://github.com/ppwwyyxx/tensorpack.git
# or add `--user` to avoid system-wide installation.

Prepare data

data should be organized as follows(set path in config.py):

$HOME/DataSet/iNaturalist2018/
    |->ground_truth
    |    |train2018.json
    |    |val2018.json
    |    |test2018.json
    |->train_val2018
    	 |...
    |->test2018
         |...

Train and Eval

  • train script example:
python iNaturalist-resnet.py --data /home/huzhikun/DataSet/iNaturalist2018/ --batch 192 --mode resnet --gpu 0,1,2,3,4,5,6,7 -d 152
  • eval script example:
python iNaturalist-resnet.py --eval --data /home/huzhikun/DataSet/iNaturalist2018/ --mode resnet --gpu 0,1,2,3 -d 152 --load train_log/iNaturalist-resnet-d152/model-205065

Test with kaggle submit file(.csv)

  • test script example:
python iNaturalist-resnet.py --test --data /home/huzhikun/DataSet/iNaturalist2018/ --mode resnet --gpu 7 -d 152 --load ./train_log/iNaturalist-resnet-d152/model-239190

Citing

@misc{wu2016tensorpack,
  title={Tensorpack},
  author={Wu, Yuxin and others},
  howpublished={\url{https://github.com/tensorpack/}},
  year={2016}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages