This release focuses on AI based graphic classification. We train resnet(152/101/50 layers) for iNaturalist Challenge at FGVC 2018 with tensorpack, which is a training interface based on TensorFlow.
On inaturalist-2018 Dataset, we train resnet(50/101/152) respectively,the result is as follows:
Model Name | train-error-top1 | train-error-top3 | val-error-top1 | val-error-top3 |
---|---|---|---|---|
Resnet50 | 0.13361 | 0.061188 | 0.399 | 0.24171 |
Resnet101 | 0.105 | 0.061306 | 0.37014 | 0.21371 |
Resnet152 | 0.11464 | 0.059394 | 0.35454 | 0.20024 |
- The code is tested on a server with
188.00
GB memory, and40
core cpu. Data storages in SSD. - we train the model with 8 Pascal Titian XP gpu, for resnet50 the batch is
32*8=256
, for resnet101/152 the batch is24*8=192
Dependencies:
- python3. We recommend using Anaconda as it already includes many common packages.
- Python bindings for OpenCV (Optional, but required by a lot of features)
- TensorFlow >= 1.3.0 (Optional if you only want to use
tensorpack.dataflow
alone as a data processing library)
# install git, then:
pip install -U git+https://github.com/ppwwyyxx/tensorpack.git
# or add `--user` to avoid system-wide installation.
data should be organized as follows(set path in config.py):
$HOME/DataSet/iNaturalist2018/
|->ground_truth
| |train2018.json
| |val2018.json
| |test2018.json
|->train_val2018
|...
|->test2018
|...
- train script example:
python iNaturalist-resnet.py --data /home/huzhikun/DataSet/iNaturalist2018/ --batch 192 --mode resnet --gpu 0,1,2,3,4,5,6,7 -d 152
- eval script example:
python iNaturalist-resnet.py --eval --data /home/huzhikun/DataSet/iNaturalist2018/ --mode resnet --gpu 0,1,2,3 -d 152 --load train_log/iNaturalist-resnet-d152/model-205065
- test script example:
python iNaturalist-resnet.py --test --data /home/huzhikun/DataSet/iNaturalist2018/ --mode resnet --gpu 7 -d 152 --load ./train_log/iNaturalist-resnet-d152/model-239190
@misc{wu2016tensorpack,
title={Tensorpack},
author={Wu, Yuxin and others},
howpublished={\url{https://github.com/tensorpack/}},
year={2016}
}