Skip to content

code for "AdPE: Adversarial Positional Embeddings for Pretraining Vision Transformers via MAE+"

License

Notifications You must be signed in to change notification settings

maple-research-lab/AdPE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AdPE

AdPE is a MIM based self-supervised learning method with adversarial embeddings.

Copyright (C) 2022 Xiao Wang, Ying Wang, Ziwei Xuan, Guo-Jun Qi

License: MIT for academic use.

Contact: Xiao Wang ([email protected]), Guo-Jun Qi ([email protected])

Introduction

Unsupervised learning of vision transformers seeks to pretrain an encoder via pretext tasks without labels. Among them is the Masked Image Modeling (MIM) aligned with pretraining of language transformers by predicting masked patches as a pretext task. A criterion in unsupervised pretraining is the pretext task needs to be sufficiently hard to prevent the transformer encoder from learning trivial low-level features not generalizable well to downstream tasks. For this purpose, we propose an Adversarial Positional Embedding (AdPE) approach -- It distorts the local visual structures by perturbing the position encodings so that the learned transformer cannot simply use the locally correlated patches to predict the missing ones. We hypothesize that it forces the transformer encoder to learn more discriminative features in a global context with stronger generalizability to downstream tasks. We will consider both absolute and relative positional encodings, where adversarial positions can be imposed both in the embedding mode and the coordinate mode. We will also present a new MAE+ baseline that brings the performance of the MIM pretraining to a new level with the AdPE. The experiments demonstrate that our approach can improve the fine-tuning accuracy of MAE by 0.8% and 0.4% over 1600 epochs of pretraining ViT-B and ViT-L on Imagenet1K. For the transfer learning task, it outperforms the MAE with the ViT-B backbone by 2.6% in mIoU on ADE20K, and by 3.2% in APbox and 1.6% in APmask on COCO, respectively. These results are obtained with the AdPE being a pure MIM approach that does not use any extra models or external datasets for pretraining.

Installation

CUDA version should be 10.1 or higher.

2. Clone the repository in your computer

git clone [email protected]:maple-research-lab/AdPE.git && cd AdPE

3. Build dependencies.

You have two options to install dependency on your computer:

3.1 Install with pip and python(Ver 3.6.9).

3.1.2 Install dependency in command line.
pip install -r requirements.txt --user

If you encounter any errors, you can install each library one by one:

pip install torch==1.8.1
pip install torchvision==0.9.1
pip install timm==0.3.2
pip install easydict
pip install opencv-python
pip install simplejson
pip install lvis
pip install tensorboard
pip install tensorboardX

3.2 Install with anaconda

3.2.2 Install dependency in command line
conda create -n AdPE python=3.7.1
conda activate AdPE
pip install -r requirements.txt 

Each time when you want to run my code, simply activate the environment by

conda activate AdPE
conda deactivate(If you want to exit) 

4 Install RPE acceleration.

Please see README in "rpe_ope" to install the acceleration for RPE calculation.

5 Prepare the ImageNet dataset

5.1 Download the ImageNet2012 Dataset under "./datasets/imagenet2012".
5.2 Go to path "./datasets/imagenet2012/val"
5.3 move validation images to labeled subfolders, using the following shell script

Usage

1. Absolute Position Embedding of MAE+

All APE should be finetuned via --pe_type=0 in finetune script.

1.1 MAE+ APE baseline

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=0 --adv_type=0 --norm=0  --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

1.2 MAE+ APE adversarial embedding

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=0 --adv_type=1 --norm=[norm_type]  --eps=[norm_eps] --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs. [norm_type] specifies the norm type for PGD, 0 indicates no PGD, 1 indicates L-2 norm in PGD, 2 indicates L-inf norm in PGD. [norm_eps] is the cutoff value. For the performance of different parameters, please refer to supplementary table A.2.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

1.3 MAE+ APE adversarial coordinate

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=0 --adv_type=2 --norm=[norm_type]  --eps=[norm_eps] --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs. [norm_type] specifies the norm type for PGD, 0 indicates no PGD, 1 indicates L-2 norm in PGD, 2 indicates L-inf norm in PGD. [norm_eps] is the cutoff value. For the performance of different parameters, please refer to supplementary table A.2.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

2. Relative Position Embedding of MAE+

2.1 MAE+ RPE baseline

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=1 --adv_type=0 --norm=0  --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs.

RPE should be finetuned via --pe_type=1 in finetune script.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

2.2 MAE+ RPE adversarial embedding

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=1 --adv_type=1 --norm=[norm_type]  --eps=[norm_eps] --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs. [norm_type] specifies the norm type for PGD, 0 indicates no PGD, 1 indicates L-2 norm in PGD, 2 indicates L-inf norm in PGD. [norm_eps] is the cutoff value. For the performance of different parameters, please refer to supplementary table A.2.

RPE should be finetuned via --pe_type=1 in finetune script.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

2.3 MAE+ RPE adversarial coordinate

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python main.py  --pe_type=1 --adv_type=2 --norm=[norm_type]  --eps=[norm_eps] --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs. [norm_type] specifies the norm type for PGD, 0 indicates no PGD, 1 indicates L-2 norm in PGD, 2 indicates L-inf norm in PGD. [norm_eps] is the cutoff value. For the performance of different parameters, please refer to supplementary table A.2.

Interpolated RPE should be finetuned via --pe_type=2 in finetune script.

To run 1600 epoch experiments, simply change "--epochs 1600 --warmup_epochs 40".

3 Multi Machine Pre-Training

This can only be run with multiple machines. Limited by our computing resources, we run experiments with 4096 on 4 matchines of 8*V100 GPU. Here we use MAE+ APE baseline as an example:

On the first node machine, run the following command:

python main.py  --pe_type=1 --adv_type=0 --norm=0  --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=4 --rank=0   --dist_url "tcp://localhost:10001"

Here [imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs.

On the other 3 nodes, run the following command:

python main.py  --pe_type=1 --adv_type=0 --norm=0  --batch_size 128 --accum_iter=4 \
 --input_size 112 --num_crop 4  --model adpe_vit_base_patch16  \
 --norm_pix_loss --mask_ratio 0.75  --epochs 400 --warmup_epochs 20 \
 --blr 1.5e-4 --weight_decay 0.05 --data_path [imagenet_path]  \
 --output_dir [output_dir] --log_dir [output_dir] --adv_lr=1.5e-4 \
 --world_size=4 --rank=[rank_id]   --dist_url "tcp://[master_ip]:10001"

Here we should change [master_ip] to the IP of the 1st node, also we should adjust rank with 1, 2, and 3 for 3 additional nodes.

4 Finetune MAE+

Here we used vit_base_patch16 to illustrate the command. For finetuning vit-l and vit-h, please check MAE paper for detailed finetune parameter changes, we followed the same hyper-param change. For learning rate, please always sweep from 1e-4 to 1e-3 to find a better learning rate with better finetune results.

4.1 Finetune APE of MAE+

For batch-size of 1024 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python3 main_finetune.py --accum_iter 1 --pe_type 0  \
    --batch_size 128 --model vit_base_patch16 --finetune [model_path] \
    --output_dir [output_dir] --log_dir [output_dir] \
    --epochs 100 --blr [base_learning_rate] --layer_decay 0.65 \
    --weight_decay 0.05 --drop_path 0.1 --mixup 0.8 --cutmix 1.0 \
    --reprob 0.25 --dist_eval --data_path [imagenet_path] \
    --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [model_path] is the pre-trained model path,[imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs, [base_learning_rate] is the base learning rate for finetune, please try sweep lr from 1e-4 to 1e-3 to find a suitable lr for finetuning.

For ViT-L and ViT-H, please check the hyper-parameter in MAE to make adjustment for parameters such as --layer_decay.

4.2 Finetune RPE of MAE+

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python3 main_finetune.py --accum_iter 4 --pe_type 1  \
    --batch_size 128 --model vit_base_patch16 --finetune [model_path] \
    --output_dir [output_dir] --log_dir [output_dir] \
    --epochs 100 --blr [base_learning_rate] --layer_decay 0.65 \
    --weight_decay 0.05 --drop_path 0.1 --mixup 0.8 --cutmix 1.0 \
    --reprob 0.25 --dist_eval --data_path [imagenet_path] \
    --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [model_path] is the pre-trained model path,[imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs, [base_learning_rate] is the base learning rate for finetune, please try sweep lr from 1e-4 to 1e-3 to find a suitable lr for finetuning.

For ViT-L and ViT-H, please check the hyper-parameter in MAE to make adjustment for parameters such as --layer_decay.

4.3 Finetune RPE of MAE+

For batch-size of 4096 (gradient accumulation), we can run on a single machine of 8*V100 32gb GPU with the following command:

python3 main_finetune.py --accum_iter 4 --pe_type 2  \
    --batch_size 128 --model vit_base_patch16 --finetune [model_path] \
    --output_dir [output_dir] --log_dir [output_dir] \
    --epochs 100 --blr [base_learning_rate] --layer_decay 0.65 \
    --weight_decay 0.05 --drop_path 0.1 --mixup 0.8 --cutmix 1.0 \
    --reprob 0.25 --dist_eval --data_path [imagenet_path] \
    --world_size=1 --rank=0   --dist_url "tcp://localhost:10001"

Here [model_path] is the pre-trained model path,[imagenet_path] is the imagenet directory, [output_dir] is the directory to save model weights and logs, [base_learning_rate] is the base learning rate for finetune, please try sweep lr from 1e-4 to 1e-3 to find a suitable lr for finetuning.

For ViT-L and ViT-H, please check the hyper-parameter in MAE to make adjustment for parameters such as --layer_decay.

Performance

Vit-B performance

Method PE Type Adv Type FT Top-1 Model
Link
MAE+ APE - 83.9 model
AdPE APE Adv Embed 84.1 model
AdPE APE Adv Coord 84.2 model
MAE+ RPE - 84.2 model
AdPE RPE Adv Embed 84.3 model
AdPE RPE Adv Coord 84.4 model

Final Performance

ViT-Base ViT-Large ViT-Huge
pre-trained checkpoint download download download
FT Top-1 84.4 86.3 waiting

Downstream Tasks

1 ADE20K Segmentation

1.1 Please install mmsegmentation following their instructions.

1.2 Please follow instructions for ADE20K segmentation.

1.3 Run segmentation with configurations.

bash tools/dist_train.sh \
[config_path] \
 $GPUS  --options optimizer.lr=[learning_rate] \
 --work-dir [output_dir] --deterministic

[config_path] specifies the configuration file "segmentation/upernet_mae-base_fp16_512x512_160k_ade20k_ms.py" in (https://github.com/open-mmlab/mmsegmentation/tree/master/configs/mae). [learning_rate] should be specified as 2e-4 and it should be searched in [5e-5, 3e-4].

2 COCO detection and instance segmentation

2.1 Install detectron2 and follow its instructions in preparing datasets.

2.2 Install additional dependencies.

pip install setuptools==59.5.0
pip install shapely

2.3 Follow instructions for training the vit detection on COCO.

2.4 Run detectron2 with our configuration in "detection" dir.

Run on a GPU machine with 8 A100 GPUs.

python tools/lazyconfig_train_net.py \
--config-file [config_path] --num-gpus=8 \
OUTPUT_DIR=[output_dir] train.init_checkpoint=[model_path] \
  dataloader.train.total_batch_size=32 \
   train.max_iter=400000

Here [config_path] specifies the configuration file, should be "detection/cascade_mask_rcnn_vitdet_b_100ep.py". [output_dir] is the directory to save model weights and logs. [mode_path] is the pre-trained model path. For learning rate, please change lr_multiplier.scheduler.values in "detection/mask_rcnn_vitdet_b_100ep.py" for a more suitable learning rate.

Citation:

AdPE: Adversarial Positional Embeddings for Pretraining Vision Transformers via MAE+.

@article{wang2022adpe,
  title={AdPE: Adversarial Positional Embeddings for Pretraining Vision Transformers via MAE+},
  author={Wang, Xiao and Wang, Ying and Xuan, Ziwei and Qi, Guo-Jun},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (submitted)},
  year={2023}
}

About

code for "AdPE: Adversarial Positional Embeddings for Pretraining Vision Transformers via MAE+"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published