Skip to content

Commit

Permalink
Backend paddle: Add dde.nn.MfNN (#1923)
Browse files Browse the repository at this point in the history
  • Loading branch information
lijialin03 authored Jan 6, 2025
1 parent 7bcda4b commit 36e3233
Show file tree
Hide file tree
Showing 2 changed files with 117 additions and 0 deletions.
2 changes: 2 additions & 0 deletions deepxde/nn/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,13 @@
"DeepONet",
"DeepONetCartesianProd",
"FNN",
"MfNN",
"MsFFN",
"PFNN",
"STMsFFN",
]

from .deeponet import DeepONet, DeepONetCartesianProd
from .fnn import FNN, PFNN
from .mfnn import MfNN
from .msffn import MsFFN, STMsFFN
115 changes: 115 additions & 0 deletions deepxde/nn/paddle/mfnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
import paddle

from .nn import NN
from .. import activations
from .. import initializers
from .. import regularizers
from ... import config


class MfNN(NN):
"""Multifidelity neural networks."""

def __init__(
self,
layer_sizes_low_fidelity,
layer_sizes_high_fidelity,
activation,
kernel_initializer,
regularization=None,
residue=False,
trainable_low_fidelity=True,
trainable_high_fidelity=True,
):
super().__init__()
self.layer_size_lo = layer_sizes_low_fidelity
self.layer_size_hi = layer_sizes_high_fidelity

self.activation = activations.get(activation)
self.initializer = initializers.get(kernel_initializer)
self.trainable_lo = trainable_low_fidelity
self.trainable_hi = trainable_high_fidelity
self.residue = residue
self.regularizer = regularizers.get(regularization)

# low fidelity
self.linears_lo = self._init_dense(self.layer_size_lo, self.trainable_lo)

# high fidelity
# linear part
self.linears_hi_l = paddle.nn.Linear(
in_features=self.layer_size_lo[0] + self.layer_size_lo[-1],
out_features=self.layer_size_hi[-1],
weight_attr=paddle.ParamAttr(initializer=self.initializer),
)
if not self.trainable_hi:
for param in self.linears_hi_l.parameters():
param.stop_gradient = False
# nonlinear part
self.layer_size_hi = [
self.layer_size_lo[0] + self.layer_size_lo[-1]
] + self.layer_size_hi
self.linears_hi = self._init_dense(self.layer_size_hi, self.trainable_hi)
# linear + nonlinear
if not self.residue:
alpha = self._init_alpha(0.0, self.trainable_hi)
self.add_parameter("alpha", alpha)
else:
alpha1 = self._init_alpha(0.0, self.trainable_hi)
alpha2 = self._init_alpha(0.0, self.trainable_hi)
self.add_parameter("alpha1", alpha1)
self.add_parameter("alpha2", alpha2)

def _init_dense(self, layer_size, trainable):
linears = paddle.nn.LayerList()
for i in range(len(layer_size) - 1):
linear = paddle.nn.Linear(
in_features=layer_size[i],
out_features=layer_size[i + 1],
weight_attr=paddle.ParamAttr(initializer=self.initializer),
)
if not trainable:
for param in linear.parameters():
param.stop_gradient = False
linears.append(linear)
return linears

def _init_alpha(self, value, trainable):
alpha = paddle.create_parameter(
shape=[1],
dtype=config.real(paddle),
default_initializer=paddle.nn.initializer.Constant(value),
)
alpha.stop_gradient = not trainable
return alpha

def forward(self, inputs):
# low fidelity
y = inputs
for i, linear in enumerate(self.linears_lo):
y = linear(y)
if i != len(self.linears_lo) - 1:
y = self.activation(y)
y_lo = y

# high fidelity
x_hi = paddle.concat([inputs, y_lo], axis=1)
# linear
y_hi_l = self.linears_hi_l(x_hi)
# nonlinear
y = x_hi
for i, linear in enumerate(self.linears_hi):
y = linear(y)
if i != len(self.linears_hi) - 1:
y = self.activation(y)
y_hi_nl = y
# linear + nonlinear
if not self.residue:
alpha = paddle.tanh(self.alpha)
y_hi = y_hi_l + alpha * y_hi_nl
else:
alpha1 = paddle.tanh(self.alpha1)
alpha2 = paddle.tanh(self.alpha2)
y_hi = y_lo + 0.1 * (alpha1 * y_hi_l + alpha2 * y_hi_nl)

return y_lo, y_hi

0 comments on commit 36e3233

Please sign in to comment.