Skip to content

Commit

Permalink
Merge pull request #414 from lsst/u/erykoff/uniformity_metrics
Browse files Browse the repository at this point in the history
U/erykoff/uniformity metrics
  • Loading branch information
rhiannonlynne authored Jun 18, 2024
2 parents 1b55750 + 0d52588 commit eaed822
Show file tree
Hide file tree
Showing 6 changed files with 254 additions and 3 deletions.
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ dependencies = [
"skyproj",
"pyoorb",
"rubin-scheduler",
"pyarrow",
]

[project.optional-dependencies]
Expand Down Expand Up @@ -68,6 +69,7 @@ run_moving_calc = "rubin_sim.maf.run_moving_calc:run_moving_calc"
run_moving_fractions = "rubin_sim.maf.run_moving_fractions:run_moving_fractions"
run_moving_join = "rubin_sim.maf.run_moving_join:run_moving_join"
scimaf_dir = "rubin_sim.maf.scimaf_dir:scimaf_dir"
run_selfcal_metric = "rubin_sim.maf.run_selfcal_metric:run_selfcal_metric"
show_maf = "rubin_sim.maf.show_maf:show_maf"
make_lsst_obs = "rubin_sim.moving_objects.make_lsst_obs:make_lsst_obs"

Expand Down
1 change: 1 addition & 0 deletions rubin_sim/maf/maf_contrib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from .periodic_star_metric import *
from .periodic_star_modulation_metric import *
from .presto_color_kne_pop_metric import *
from .selfcal_uniformity_metric import *
from .star_count_mass_metric import *
from .star_count_metric import *
from .static_probes_fom_summary_metric import *
Expand Down
165 changes: 165 additions & 0 deletions rubin_sim/maf/maf_contrib/selfcal_uniformity_metric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
__all__ = ("PhotometricSelfCalUniformityMetric",)

import os
import time

import healpy as hp
import numpy as np
from astropy.coordinates import SkyCoord
from astropy.table import Table
from rubin_scheduler.data import get_data_dir
from rubin_scheduler.utils import healbin
from scipy.stats import median_abs_deviation

from rubin_sim.maf.metrics import BaseMetric
from rubin_sim.selfcal import LsqrSolver, OffsetSNR, generate_catalog
from rubin_sim.selfcal.offsets import OffsetSys


def _match(arr1, arr2):
st1 = np.argsort(arr1)
sub1 = np.searchsorted(arr1, arr2, sorter=st1)
if arr2.max() > arr1.max():
bad = sub1 == arr1.size
sub1[bad] = arr1.size - 1

(sub2,) = np.where(arr1[st1[sub1]] == arr2)
sub1 = st1[sub1[sub2]]

return sub1, sub2


class PhotometricSelfCalUniformityMetric(BaseMetric):
def __init__(self, nside_residual=128, highglat_cut=30.0, outlier_nsig=4.0):
cols = [
"observationid",
"fieldra",
"fielddec",
"fiveSigmaDepth",
"rotSkyPos",
"filter",
]
super().__init__(col=cols, metric_name="PhotometricSelfCalUniformityMetric")

filename = os.path.join(get_data_dir(), "maf", "monster_stars_uniformity_i15-18_sampled.parquet")
self.stars = Table.read(filename)

# We have to rename dec to decl for the selfcal code.
if "dec" in self.stars.dtype.names:
self.stars["decl"] = self.stars["dec"]

self.stars = self.stars.as_array()

self.nside_residual = nside_residual
self.highglat_cut = highglat_cut
self.outlier_nsig = outlier_nsig

self.units = "mmag"

def run(self, data_slice, slice_point=None):
filter_name = data_slice["filter"][0]

offsets = [OffsetSys(error_sys=0.03), OffsetSNR(lsst_filter=filter_name)]

visits = np.zeros(
len(data_slice),
dtype=[
("observationId", "i8"),
("ra", "f8"),
("dec", "f8"),
("fiveSigmaDepth", "f8"),
("rotSkyPos", "f8"),
],
)
visits["observationId"] = data_slice["observationId"]
visits["ra"] = data_slice["fieldRA"]
visits["dec"] = data_slice["fieldDec"]
visits["fiveSigmaDepth"] = data_slice["fiveSigmaDepth"]
visits["rotSkyPos"] = data_slice["rotSkyPos"]

good_stars = np.isfinite(self.stars[f"{filter_name}mag"])
stars = self.stars[good_stars]

observed_stars = generate_catalog(
visits,
stars,
offsets=offsets,
lsst_filter=filter_name,
n_patches=16,
verbose=False,
)

solver = LsqrSolver(observed_stars)

print("Starting solver...")
t0 = time.time()

solver.run()
fit_patches, fit_stars = solver.return_solution()

t1 = time.time()
dt = (t1 - t0) / 60.0
print("runtime= %.1f min" % dt)

# Trim stars to the ones with solutions.
a, b = _match(stars["id"], fit_stars["id"])
stars_trimmed = stars[a]
fit_stars_trimmed = fit_stars[b]

# Residuals after fit, removing floating zeropoint
resid = stars_trimmed[f"{filter_name}mag"] - fit_stars_trimmed["fit_mag"]
resid = resid - np.median(resid)

resid_map = healbin(
stars_trimmed["ra"],
stars_trimmed["dec"],
resid,
self.nside_residual,
reduce_func=np.median,
)

(ipring,) = np.where(resid_map > hp.UNSEEN)

scatter_full = median_abs_deviation(resid_map[ipring], scale="normal")

# Fraction of (4) sigma outliers.
highscat = np.abs(resid_map[ipring]) > self.outlier_nsig * scatter_full
outlier_frac_full = highscat.sum() / len(ipring)

# Cut to high latitude
ra, dec = hp.pix2ang(self.nside_residual, ipring, nest=False, lonlat=True)
coords = SkyCoord(ra, dec, frame="icrs", unit="deg")
b = coords.galactic.b.value

high_glat = np.abs(b) > self.highglat_cut
scatter_highglat = median_abs_deviation(resid_map[ipring[high_glat]], scale="normal")

# Fraction of (4) sigma outliers.
highscat = np.abs(resid_map[ipring[high_glat]]) > self.outlier_nsig * scatter_highglat
outlier_frac_highglat = highscat.sum() / len(ipring)

# Convert to mmag
scatter_full = scatter_full * 1000.0
scatter_highglat = scatter_highglat * 1000.0

result = {
"scatter_full": scatter_full,
"scatter_highglat": scatter_highglat,
"outlier_frac_full": outlier_frac_full,
"outlier_frac_highglat": outlier_frac_highglat,
"uniformity_map": resid_map,
}

return result

def reduce_scatter_full(self, metric_value):
return metric_value["scatter_full"]

def reduce_scatter_highglat(self, metric_value):
return metric_value["scatter_highglat"]

def reduce_outlier_frac_full(self, metric_value):
return metric_value["outlier_frac_full"]

def reduce_outlier_frac_highglat(self, metric_value):
return metric_value["outlier_frac_highglat"]
84 changes: 84 additions & 0 deletions rubin_sim/maf/run_selfcal_metric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
__all__ = ("run_selfcal_metric",)

import argparse
import os
import shutil

import healpy as hp
import matplotlib
import numpy as np

matplotlib.use("Agg")

from .db import ResultsDb
from .maf_contrib import PhotometricSelfCalUniformityMetric
from .metric_bundles import MetricBundle, MetricBundleGroup
from .metrics import IdentityMetric
from .plots import HealpixHistogram, HealpixSkyMap, PlotHandler
from .slicers import HealpixSlicer, UniSlicer


def run_selfcal_metric():
"""
Run the self-calibration metric on one database.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--db", type=str, default=None)
parser.add_argument(
"--no_clobber",
dest="no_clobber",
default=False,
action="store_true",
help="Do not remove existing directory outputs",
)
args = parser.parse_args()

opsdb = args.db
sim_name = os.path.basename(opsdb).replace(".db", "")

out_dir = sim_name + "_selfcal"
if not args.no_clobber:
if os.path.isdir(out_dir):
shutil.rmtree(out_dir)

# Set up the metric bundle.
map_nside = 128
selfcal_metric = PhotometricSelfCalUniformityMetric(nside_residual=map_nside)
slicer = UniSlicer()
# Exclude DDF visits
sql = "note not like '%DD%'"
# And run on only year 1 (?)
sql += " and night < 366"
bundle = MetricBundle(selfcal_metric, slicer, sql, run_name=sim_name, info_label="year 1 no-DD")

# Set up the resultsDB
results_db = ResultsDb(out_dir=out_dir)
# Go and run it
group = MetricBundleGroup(
{"selfcal": bundle}, opsdb, out_dir=out_dir, results_db=results_db, save_early=True
)
group.run_all(clear_memory=False, plot_now=True)

# Make plots of the residuals map
map_bundle = MetricBundle(
IdentityMetric(metric_name="PhotoCal Uniformity"),
HealpixSlicer(map_nside),
sql,
run_name=sim_name,
info_label="year 1 no-DD",
)
tmp_vals = bundle.metric_values[0]["uniformity_map"]
tmp_vals = np.where(tmp_vals == hp.UNSEEN, map_bundle.slicer.badval, tmp_vals)
map_bundle.metric_values = np.ma.MaskedArray(
data=tmp_vals,
mask=np.zeros(map_bundle.slicer.shape, "bool"),
fill_value=map_bundle.slicer.badval,
)
map_bundle.write(out_dir=out_dir, results_db=results_db)

ph = PlotHandler(results_db=results_db, out_dir=out_dir)
ph.set_metric_bundles([map_bundle])
_ = ph.plot(HealpixSkyMap(), plot_dicts={"color_min": -0.02, "color_max": 0.02})
_ = ph.plot(HealpixHistogram(), plot_dicts={"percentile_clip": 99})

results_db.close()
2 changes: 1 addition & 1 deletion rubin_sim/selfcal/offsets.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import numpy as np

from rubin_sim.maf import m52snr
from ..maf.utils.astrometry_utils import m52snr

# from lsst.sims.selfcal.clouds.Arma import ArmaSf, Clouds

Expand Down
3 changes: 1 addition & 2 deletions rubin_sim/selfcal/star_tools.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
__all__ = ("stars_project", "assign_patches")

import numpy as np

from rubin_sim.utils import gnomonic_project_toxy
from rubin_scheduler.utils import gnomonic_project_toxy


def stars_project(stars, visit):
Expand Down

0 comments on commit eaed822

Please sign in to comment.