Skip to content

Commit

Permalink
feat: add BitVec Int add & mul lemmas
Browse files Browse the repository at this point in the history
  • Loading branch information
joehendrix committed Apr 11, 2024
1 parent 68e3982 commit bdbd931
Show file tree
Hide file tree
Showing 2 changed files with 43 additions and 4 deletions.
24 changes: 23 additions & 1 deletion src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -817,9 +817,13 @@ Definition of bitvector addition as a nat.
.ofFin x + y = .ofFin (x + y.toFin) := rfl
@[simp] theorem add_ofFin (x : BitVec n) (y : Fin (2^n)) :
x + .ofFin y = .ofFin (x.toFin + y) := rfl
@[simp] theorem ofNat_add_ofNat {n} (x y : Nat) : x#n + y#n = (x + y)#n := by

theorem ofNat_add {n} (x y : Nat) : (x + y)#n = x#n + y#n := by
apply eq_of_toNat_eq ; simp [BitVec.ofNat]

theorem ofNat_add_ofNat {n} (x y : Nat) : x#n + y#n = (x + y)#n :=
(ofNat_add x y).symm

protected theorem add_assoc (x y z : BitVec n) : x + y + z = x + (y + z) := by
apply eq_of_toNat_eq ; simp [Nat.add_assoc]

Expand All @@ -835,6 +839,15 @@ theorem truncate_add (x y : BitVec w) (h : i ≤ w) :
have dvd : 2^i ∣ 2^w := Nat.pow_dvd_pow _ h
simp [bv_toNat, h, Nat.mod_mod_of_dvd _ dvd]

@[simp, bv_toNat] theorem toInt_add (x y : BitVec w) :
(x + y).toInt = (x.toInt + y.toInt).bmod (2^w) := by
simp [toInt_eq_toNat_bmod]

theorem ofInt_add {n} (x y : Int) : BitVec.ofInt n (x + y) =
BitVec.ofInt n x + BitVec.ofInt n y := by
apply eq_of_toInt_eq
simp

/-! ### sub/neg -/

theorem sub_def {n} (x y : BitVec n) : x - y = .ofNat n (x.toNat + (2^n - y.toNat)) := by rfl
Expand Down Expand Up @@ -911,6 +924,15 @@ instance : Std.Associative (fun (x y : BitVec w) => x * y) := ⟨BitVec.mul_asso
instance : Std.LawfulCommIdentity (fun (x y : BitVec w) => x * y) (1#w) where
right_id := BitVec.mul_one

@[simp, bv_toNat] theorem toInt_mul (x y : BitVec w) :
(x * y).toInt = (x.toInt * y.toInt).bmod (2^w) := by
simp [toInt_eq_toNat_bmod]

theorem ofInt_mul {n} (x y : Int) : BitVec.ofInt n (x * y) =
BitVec.ofInt n x * BitVec.ofInt n y := by
apply eq_of_toInt_eq
simp

/-! ### le and lt -/

@[bv_toNat] theorem le_def (x y : BitVec n) :
Expand Down
23 changes: 20 additions & 3 deletions src/Init/Data/Int/DivModLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1054,20 +1054,37 @@ theorem emod_add_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n + y) n = Int.bmo
simp [Int.emod_def, Int.sub_eq_add_neg]
rw [←Int.mul_neg, Int.add_right_comm, Int.bmod_add_mul_cancel]

@[simp]
theorem emod_mul_bmod_congr (x : Int) (n : Nat) : Int.bmod (x%n * y) n = Int.bmod (x * y) n := by
simp [Int.emod_def, Int.sub_eq_add_neg]
rw [←Int.mul_neg, Int.add_mul, Int.mul_assoc, Int.bmod_add_mul_cancel]

@[simp]
theorem bmod_add_bmod_congr : Int.bmod (Int.bmod x n + y) n = Int.bmod (x + y) n := by
rw [bmod_def x n]
split
case inl p =>
simp
simp only [emod_add_bmod_congr]
case inr p =>
rw [Int.sub_eq_add_neg, Int.add_right_comm, ←Int.sub_eq_add_neg]
simp

@[simp]
theorem add_bmod_bmod : Int.bmod (x + Int.bmod y n) n = Int.bmod (x + y) n := by
@[simp] theorem add_bmod_bmod : Int.bmod (x + Int.bmod y n) n = Int.bmod (x + y) n := by
rw [Int.add_comm x, Int.bmod_add_bmod_congr, Int.add_comm y]

@[simp]
theorem bmod_mul_bmod : Int.bmod (Int.bmod x n * y) n = Int.bmod (x * y) n := by
rw [bmod_def x n]
split
case inl p =>
simp
case inr p =>
rw [Int.sub_mul, Int.sub_eq_add_neg, ← Int.mul_neg]
simp

@[simp] theorem mul_bmod_bmod : Int.bmod (x * Int.bmod y n) n = Int.bmod (x * y) n := by
rw [Int.mul_comm x, bmod_mul_bmod, Int.mul_comm x]

theorem emod_bmod {x : Int} {m : Nat} : bmod (x % m) m = bmod x m := by
simp [bmod]

Expand Down

0 comments on commit bdbd931

Please sign in to comment.