Skip to content

Commit

Permalink
fix: grind term preprocessor (#6659)
Browse files Browse the repository at this point in the history
This PR fixes a bug in the `grind` term preprocessor. It was abstracting
nested proofs **before** reducible constants were unfolded.

---------

Co-authored-by: Kim Morrison <[email protected]>
  • Loading branch information
leodemoura and kim-em authored Jan 16, 2025
1 parent 6259b47 commit af4a7d7
Show file tree
Hide file tree
Showing 2 changed files with 119 additions and 2 deletions.
2 changes: 1 addition & 1 deletion src/Lean/Meta/Tactic/Grind/Simp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ def simp (e : Expr) : GoalM Simp.Result := do
let e ← instantiateMVars e
let r ← simpCore e
let e' := r.expr
let e' ← unfoldReducible e'
let e' ← abstractNestedProofs e'
let e' ← markNestedProofs e'
let e' ← unfoldReducible e'
let e' ← eraseIrrelevantMData e'
let e' ← foldProjs e'
let e' ← normalizeLevels e'
Expand Down
119 changes: 118 additions & 1 deletion tests/lean/run/grind_cat.lean
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@ structure Functor (C : Type u₁) [Category.{v₁} C] (D : Type u₂) [Category.
/-- A functor preserves composition. -/
map_comp : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map (f ≫ g) = (map f) ≫ (map g) := by cat_tac

scoped infixr:26 "" => Functor

attribute [simp] Functor.map_id Functor.map_comp

attribute [grind =] Functor.map_id
Expand All @@ -51,6 +53,8 @@ def comp (F : Functor C D) (G : Functor D E) : Functor C E where
map f := G.map (F.map f)
-- Note `map_id` and `map_comp` are handled by `cat_tac`.

infixr:80 "" => Functor.comp

variable {X Y : C} {G : Functor D E}

@[simp, grind =] theorem comp_obj : (F.comp G).obj X = G.obj (F.obj X) := rfl
Expand All @@ -73,7 +77,7 @@ variable {X : C}

protected def id (F : Functor C D) : NatTrans F F where app X := 𝟙 (F.obj X)

@[simp, grind =] theorem id_app : (NatTrans.id F).app X = 𝟙 (F.obj X) := rfl
@[simp, grind =] theorem id_app' : (NatTrans.id F).app X = 𝟙 (F.obj X) := rfl

protected def vcomp (α : NatTrans F G) (β : NatTrans G H) : NatTrans F H where
app X := α.app X ≫ β.app X
Expand All @@ -96,6 +100,11 @@ instance Functor.category : Category.{max u₁ v₂} (Functor C D) where
comp α β := NatTrans.vcomp α β
-- Here we're okay: all the proofs are handled by `cat_tac`.

namespace NatTrans

@[ext]
theorem ext' {α β : F ⟶ G} (w : α.app = β.app) : α = β := NatTrans.ext w

@[simp, grind =]
theorem id_app (F : Functor C D) (X : C) : (𝟙 F : F ⟶ F).app X = 𝟙 (F.obj X) := rfl

Expand All @@ -122,6 +131,30 @@ def hcomp {H I : Functor D E} (α : F ⟶ G) (β : H ⟶ I) : F.comp H ⟶ G.com
-- rw [Functor.comp_map, Functor.comp_map, ← assoc, naturality, assoc, ← I.map_comp, naturality,
-- map_comp, assoc]

/-- Notation for horizontal composition of natural transformations. -/
infixl:80 "" => hcomp

@[simp] theorem hcomp_app {H I : Functor D E} (α : F ⟶ G) (β : H ⟶ I) (X : C) :
(α ◫ β).app X = β.app (F.obj X) ≫ I.map (α.app X) := rfl

attribute [grind =] hcomp_app

theorem hcomp_id_app {H : D ⥤ E} (α : F ⟶ G) (X : C) : (α ◫ 𝟙 H).app X = H.map (α.app X) := by
cat_tac

theorem id_hcomp_app {H : E ⥤ C} (α : F ⟶ G) (X : E) : (𝟙 H ◫ α).app X = α.app _ := by cat_tac

-- Note that we don't yet prove a `hcomp_assoc` lemma here: even stating it is painful, because we
-- need to use associativity of functor composition. (It's true without the explicit associator,
-- because functor composition is definitionally associative,
-- but relying on the definitional equality causes bad problems with elaboration later.)
theorem exchange {I J K : D ⥤ E} (α : F ⟶ G) (β : G ⟶ H) (γ : I ⟶ J) (δ : J ⟶ K) :
(α ≫ β) ◫ (γ ≫ δ) = (α ◫ γ) ≫ β ◫ δ := by
ext X
cat_tac

end NatTrans

structure Iso {C : Type u} [Category.{v} C] (X Y : C) where
hom : X ⟶ Y
inv : Y ⟶ X
Expand Down Expand Up @@ -179,4 +212,88 @@ def homToEquiv (α : X ≅ Y) {Z : C} : (Z ⟶ X) ≃ (Z ⟶ Y) where
right_inv := sorry

end Iso

section Mathlib.CategoryTheory.Functor.Category


open NatTrans Category CategoryTheory.Functor

variable (C : Type u₁) [Category.{v₁} C] (D : Type u₂) [Category.{v₂} D]

attribute [local simp] vcomp_app

variable {C D} {E : Type u₃} [Category.{v₃} E]
variable {E' : Type u₄} [Category.{v₄} E']
variable {F G H I : C ⥤ D}


namespace NatTrans

@[simp]
theorem vcomp_eq_comp (α : F ⟶ G) (β : G ⟶ H) : NatTrans.vcomp α β = α ≫ β := rfl

theorem vcomp_app' (α : F ⟶ G) (β : G ⟶ H) (X : C) : (α ≫ β).app X = α.app X ≫ β.app X := rfl

theorem congr_app {α β : F ⟶ G} (h : α = β) (X : C) : α.app X = β.app X := by rw [h]

theorem naturality_app_app {F G : C ⥤ D ⥤ E ⥤ E'}
(α : F ⟶ G) {X₁ Y₁ : C} (f : X₁ ⟶ Y₁) (X₂ : D) (X₃ : E) :
((F.map f).app X₂).app X₃ ≫ ((α.app Y₁).app X₂).app X₃ =
((α.app X₁).app X₂).app X₃ ≫ ((G.map f).app X₂).app X₃ :=
congr_app (NatTrans.naturality_app α X₂ f) X₃

end NatTrans

open NatTrans

namespace Functor

/-- Flip the arguments of a bifunctor. See also `Currying.lean`. -/
protected def flip (F : C ⥤ D ⥤ E) : D ⥤ C ⥤ E where
obj k :=
{ obj := fun j => (F.obj j).obj k,
map := fun f => (F.map f).app k, }
map f := { app := fun j => (F.obj j).map f }
map_id k := by cat_tac
map_comp f g := sorry

@[simp] theorem flip_obj_obj (F : C ⥤ D ⥤ E) (k : D) : (F.flip.obj k).obj = fun j => (F.obj j).obj k := rfl
@[simp] theorem flip_obj_map (F : C ⥤ D ⥤ E) (k : D) {X Y : C}(f : X ⟶ Y) : (F.flip.obj k).map f = (F.map f).app k := rfl
@[simp] theorem flip_map_app (F : C ⥤ D ⥤ E) {X Y : D} (f : X ⟶ Y) (k : C) : (F.flip.map f).app k = (F.obj k).map f := rfl

attribute [grind =] flip_obj_obj flip_obj_map flip_map_app

end Functor

variable (C D E) in
/-- The functor `(C ⥤ D ⥤ E) ⥤ D ⥤ C ⥤ E` which flips the variables. -/
def flipFunctor : (C ⥤ D ⥤ E) ⥤ D ⥤ C ⥤ E where
obj F := F.flip
map {F₁ F₂} φ :=
{ app := fun Y =>
{ app := fun X => (φ.app X).app Y
naturality := fun X₁ X₂ f => by
dsimp
simp only [← NatTrans.comp_app, naturality] }
naturality := sorry }
map_id := sorry
map_comp := sorry

namespace Iso

@[simp]
theorem map_hom_inv_id_app {X Y : C} (e : X ≅ Y) (F : C ⥤ D ⥤ E) (Z : D) :
(F.map e.hom).app Z ≫ (F.map e.inv).app Z = 𝟙 _ := by
cat_tac

@[simp]
theorem map_inv_hom_id_app {X Y : C} (e : X ≅ Y) (F : C ⥤ D ⥤ E) (Z : D) :
(F.map e.inv).app Z ≫ (F.map e.hom).app Z = 𝟙 _ := by
cat_tac

end Iso


end Mathlib.CategoryTheory.Functor.Category

end CategoryTheory

0 comments on commit af4a7d7

Please sign in to comment.