Skip to content

Commit

Permalink
Fix Lean names in blueprint
Browse files Browse the repository at this point in the history
  • Loading branch information
PatrickMassot committed May 24, 2024
1 parent 9fa4587 commit 7b1308f
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 7 deletions.
6 changes: 3 additions & 3 deletions blueprint/src/global_convex_integration.tex
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,7 @@ \subsection{Jets spaces}
\begin{definition}
\label{def:holonomic_section}
\leanok
\lean{OneJetSet.IsHolonomicAt, OneJetSec.isHolonomicAt_iff}
\lean{OneJetSec.IsHolonomicAt, OneJetSec.isHolonomicAt_iff}
\uses{def:one_jet_space}
A section $\F$ of $J^1(M, N) → M$ is called holonomic if it is the
$1$--jet of its base map.
Expand Down Expand Up @@ -520,7 +520,7 @@ \subsection*{Parametricity for free}
\label{lem:param_for_free}
\uses{def:h-princ}
\leanok
\lean{RelMfld.SatisfiesHPrinciple.SatisfiesHPrincipleWith}
\lean{RelMfld.SatisfiesHPrinciple.satisfiesHPrincipleWith}
Let $\Rel$ be a first order differential relation for maps from $M$ to
$N$.
If, for every manifold with boundary $P$, $\Rel^P$ satisfies the
Expand Down Expand Up @@ -631,7 +631,7 @@ \section{The $h$-principle for open and ample differential relations}
\label{thm:open_ample}
% \uses{def:h-princ} % causes transitive arrow in depgraph
\leanok
\lean{RelMfld.Ample.SatisfiesHPrincipleWith}
\lean{RelMfld.Ample.satisfiesHPrincipleWith}
For any manifolds $X$ and $Y$, any relation $\Rel ⊂ J^1(X, Y)$ that is open
and ample satisfies the full $h$-principle (relative, parametric and $C^0$-dense).
\end{theorem}
Expand Down
8 changes: 4 additions & 4 deletions blueprint/src/local_convex_integration.tex
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ \section{The main inductive step}
\begin{definition}
\label{def:hol_partial}
\leanok
\lean{JetSet.IsPartHolonomicAt}
\lean{JetSec.IsPartHolonomicAt}
Let $E'$ be a linear subspace of $E$.
A map $\F = (f, φ) : E → F × \Hom(E, F)$ is $E'$--holonomic if,
for every $v$ in $E'$ and every $x$, $Df(x)v = φ(x)v$.
Expand Down Expand Up @@ -134,7 +134,7 @@ \section{The main inductive step}
\begin{definition}
\label{def:htpy_jet_sec_loc}
\leanok
\lean{htpy_jet_sec}
\lean{HtpyJetSec}
A $1$-jet section from $E$ to $F$ is a function from $E$ to $F × \Hom(E, F)$.
A homotopy of $1$-jet sections is a smooth map
$\F : ℝ × E → F × \Hom(E, F)$.
Expand Down Expand Up @@ -327,7 +327,7 @@ \section{Ample differential relations}
\begin{lemma}
\label{lem:ample_codim_two}
\uses{def:ample_subset}
\lean{ample_of_two_le_codim}
\lean{AmpleSet.of_one_lt_codim}
\leanok
The complement of a linear subspace of codimension at least 2 is
ample.
Expand Down Expand Up @@ -369,7 +369,7 @@ \section{Ample differential relations}
\begin{definition}
\label{def:ample_relation_loc}
\leanok
\lean{RelLoc.isAmple}
\lean{RelLoc.IsAmple}
\uses{def:ample_subset, def:rel_slice}
A first order differential relation $\Rel$ is ample if all its slices
are ample.
Expand Down

0 comments on commit 7b1308f

Please sign in to comment.