Skip to content

Commit

Permalink
feat: move the lemma Algebra.coe_norm_int (#8481)
Browse files Browse the repository at this point in the history
The following lemma:
```lean
theorem Algebra.coe_norm_int {K : Type*} [Field K] [NumberField K] (x : π“ž K) :
    Algebra.norm β„€ x = Algebra.norm β„š (x : K)
```
is currently in `NumberField.Units` but it belongs to  `NumberField.Norm`
  • Loading branch information
xroblot authored and alexkeizer committed Nov 21, 2023
1 parent 18c15e9 commit c40b4df
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 5 deletions.
10 changes: 9 additions & 1 deletion Mathlib/NumberTheory/NumberField/Norm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Riccardo Brasca, Eric Rodriguez
-/
import Mathlib.NumberTheory.NumberField.Basic
import Mathlib.RingTheory.Norm
import Mathlib.RingTheory.Localization.NormTrace

#align_import number_theory.number_field.norm from "leanprover-community/mathlib"@"00f91228655eecdcd3ac97a7fd8dbcb139fe990a"

Expand All @@ -26,6 +26,14 @@ open scoped NumberField BigOperators

open Finset NumberField Algebra FiniteDimensional

section rat

theorem Algebra.coe_norm_int {K : Type*} [Field K] [NumberField K] (x : π“ž K) :
Algebra.norm β„€ x = Algebra.norm β„š (x : K) :=
(Algebra.norm_localization (R := β„€) (Rβ‚˜ := β„š) (S := π“ž K) (Sβ‚˜ := K) (nonZeroDivisors β„€) x).symm

end rat

namespace RingOfIntegers

variable {L : Type*} (K : Type*) [Field K] [Field L] [Algebra K L] [FiniteDimensional K L]
Expand Down
4 changes: 0 additions & 4 deletions Mathlib/NumberTheory/NumberField/Units.lean
Original file line number Diff line number Diff line change
Expand Up @@ -55,10 +55,6 @@ theorem Rat.RingOfIntegers.isUnit_iff {x : π“ž β„š} : IsUnit x ↔ (x : β„š) =
Subtype.coe_injective.eq_iff]; rfl
#align rat.ring_of_integers.is_unit_iff Rat.RingOfIntegers.isUnit_iff

theorem Algebra.coe_norm_int {K : Type*} [Field K] [NumberField K] (x : π“ž K) :
Algebra.norm β„€ x = Algebra.norm β„š (x : K) :=
(Algebra.norm_localization (R := β„€) (Rβ‚˜ := β„š) (S := π“ž K) (Sβ‚˜ := K) (nonZeroDivisors β„€) x).symm

end Rat

variable (K : Type*) [Field K]
Expand Down

0 comments on commit c40b4df

Please sign in to comment.