Skip to content

Commit

Permalink
feat(Data/Nat): add Nat.div_pow (#8327)
Browse files Browse the repository at this point in the history
Adds the missing lemma Nat.div_pow, which seemed to be missing (at least, `exact?%` couldn't find it with all of Mathlib imported). Also moves `div_mul_div_comm` higher in the hierarchy (and golf) because it doesn't need the ordered semiring instance, cf the docstring of `Data/Nat/Order/Basic`.



Co-authored-by: Bhavik Mehta <[email protected]>
  • Loading branch information
2 people authored and alexkeizer committed Nov 21, 2023
1 parent 6beccd2 commit 32b6cb1
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 20 deletions.
20 changes: 20 additions & 0 deletions Mathlib/Data/Nat/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -707,6 +707,26 @@ protected theorem div_left_inj {a b d : ℕ} (hda : d ∣ a) (hdb : d ∣ b) : a
rw [← Nat.mul_div_cancel' hda, ← Nat.mul_div_cancel' hdb, h]
#align nat.div_left_inj Nat.div_left_inj

theorem div_mul_div_comm {l : ℕ} (hmn : n ∣ m) (hkl : l ∣ k) :
(m / n) * (k / l) = (m * k) / (n * l) := by
obtain ⟨x, rfl⟩ := hmn
obtain ⟨y, rfl⟩ := hkl
rcases n.eq_zero_or_pos with rfl | hn
· simp
rcases l.eq_zero_or_pos with rfl | hl
· simp
rw [Nat.mul_div_cancel_left _ hn, Nat.mul_div_cancel_left _ hl, mul_assoc n, Nat.mul_left_comm x,
←mul_assoc n, Nat.mul_div_cancel_left _ (Nat.mul_pos hn hl)]
#align nat.div_mul_div_comm Nat.div_mul_div_comm

protected theorem div_pow {a b c : ℕ} (h : a ∣ b) : (b / a) ^ c = b ^ c / a ^ c := by
rcases c.eq_zero_or_pos with rfl | hc
· simp
rcases a.eq_zero_or_pos with rfl | ha
· simp [Nat.zero_pow hc]
refine (Nat.div_eq_of_eq_mul_right (pos_pow_of_pos c ha) ?_).symm
rw [←Nat.mul_pow, Nat.mul_div_cancel_left' h]

/-! ### `mod`, `dvd` -/


Expand Down
20 changes: 0 additions & 20 deletions Mathlib/Data/Nat/Order/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -506,26 +506,6 @@ theorem add_mod_eq_ite :
· exact Nat.mod_eq_of_lt (lt_of_not_ge h)
#align nat.add_mod_eq_ite Nat.add_mod_eq_ite

theorem div_mul_div_comm (hmn : n ∣ m) (hkl : l ∣ k) : m / n * (k / l) = m * k / (n * l) :=
have exi1 : ∃ x, m = n * x := hmn
have exi2 : ∃ y, k = l * y := hkl
if hn : n = 0 then by simp [hn]
else
have : 0 < n := Nat.pos_of_ne_zero hn
if hl : l = 0 then by simp [hl]
else by
have : 0 < l := Nat.pos_of_ne_zero hl
cases' exi1 with x hx
cases' exi2 with y hy
rw [hx, hy, Nat.mul_div_cancel_left, Nat.mul_div_cancel_left]
apply Eq.symm
apply Nat.div_eq_of_eq_mul_left
apply mul_pos
repeat' assumption
-- Porting note: this line was `cc` in Lean3
simp only [mul_comm, mul_left_comm, mul_assoc]
#align nat.div_mul_div_comm Nat.div_mul_div_comm

theorem div_eq_self : m / n = m ↔ m = 0 ∨ n = 1 := by
constructor
· intro
Expand Down

0 comments on commit 32b6cb1

Please sign in to comment.