-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: zeramorphic <[email protected]>
- Loading branch information
1 parent
52a5a6b
commit 660f5b7
Showing
4 changed files
with
167 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
import ConNF.Counting.BaseCoding | ||
import ConNF.Counting.CountSupportOrbit | ||
|
||
/-! | ||
# Counting coding functions at level `⊥` and `0` | ||
In this file, we show that there are less than `μ` coding functions at levels `⊥` and `0`. | ||
## Main declarations | ||
* `ConNF.card_bot_codingFunction_lt`, `ConNF.card_codingFunction_lt_of_isMin`: There are less than | ||
`μ` coding functions at levels `⊥` and `0`. | ||
-/ | ||
|
||
noncomputable section | ||
universe u | ||
|
||
open Cardinal Ordinal WithBot | ||
|
||
namespace ConNF | ||
|
||
variable [Params.{u}] [Level] [CoherentData] | ||
|
||
theorem card_codingFunction_lt_of_card_supportOrbit_lt {β : TypeIndex} [LeLevel β] | ||
(ν : Cardinal.{u}) (hν : ν < #μ) | ||
(hβ : #(SupportOrbit β) < #μ) | ||
(hνS : ∀ S : Support β, #{x : TSet β // S.Supports x} ≤ ν) : | ||
#(CodingFunction β) < #μ := by | ||
have := mk_le_of_surjective | ||
(f := λ x : (o : SupportOrbit β) × {x : TSet β // o.out.Supports x} ↦ | ||
(Tangle.code ⟨x.2, x.1.out, x.2.prop⟩ : CodingFunction β)) ?_ | ||
· apply this.trans_lt | ||
simp only [mk_sigma] | ||
refine (sum_le_sum (g := λ _ ↦ ν) ?_ ?_).trans_lt ?_ | ||
· intro o | ||
exact hνS o.out | ||
· simp only [sum_const, Cardinal.lift_id] | ||
exact mul_lt_of_lt μ_isStrongLimit.aleph0_le hβ hν | ||
· intro χ | ||
obtain ⟨S, x, hx⟩ := χ.rel_dom_nonempty | ||
have : S.orbit = S.orbit.out.orbit := by rw [SupportOrbit.out_orbit (β := β)] | ||
rw [Support.orbit_eq_iff] at this | ||
obtain ⟨ρ, hρ⟩ := this | ||
refine ⟨⟨S.orbit, ρ • x, ?_⟩, ?_⟩ | ||
· rw [← hρ] | ||
exact (χ.supports_of_rel hx).smul ρ | ||
refine CodingFunction.ext S x ?_ hx | ||
dsimp only | ||
refine ⟨ρ⁻¹, ?_, ?_⟩ | ||
· simp only [allPermForget_inv, ← hρ, inv_smul_smul] | ||
· simp only [inv_smul_smul] | ||
|
||
theorem card_bot_codingFunction_lt : | ||
#(CodingFunction ⊥) < #μ := by | ||
apply card_codingFunction_lt_of_card_supportOrbit_lt (2 ^ #κ) | ||
· exact μ_isStrongLimit.2 _ κ_lt_μ | ||
· apply card_supportOrbit_lt | ||
intro δ hδ | ||
cases not_lt_bot hδ | ||
intro S | ||
apply le_trans ?_ (card_supports_le (S ⇘. .nil)) | ||
refine mk_le_of_injective (f := λ x ↦ ⟨{StrSet.botEquiv x.valᵁ}, ?_⟩) ?_ | ||
· intro π hπ | ||
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm π | ||
have := x.prop.supports ρ ?_ | ||
· rw [Set.smul_set_singleton, Set.singleton_eq_singleton_iff] | ||
have := congr_arg (λ x ↦ StrSet.botEquiv xᵁ) this | ||
simp only [smul_forget, StrSet.strPerm_smul_bot, hρ] at this | ||
exact this | ||
· apply Support.ext | ||
intro A | ||
cases Path.eq_nil A | ||
simp only [Support.smul_derivBot, hρ, hπ] | ||
· intro x y h | ||
rw [Subtype.mk.injEq, Set.singleton_eq_singleton_iff, | ||
EmbeddingLike.apply_eq_iff_eq] at h | ||
exact Subtype.coe_injective (tSetForget_injective h) | ||
|
||
omit [CoherentData] in | ||
theorem eq_bot_of_lt_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) {δ : TypeIndex} (hδ : δ < β) : | ||
δ = ⊥ := by | ||
cases δ using recBotCoe | ||
case bot => rfl | ||
case coe δ => | ||
cases hδ.not_le (coe_le_coe.mpr (hβ (coe_le_coe.mp hδ.le))) | ||
|
||
theorem allPerm_of_basePerm_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) (π : BasePerm) : | ||
∃ ρ : AllPerm β, ρᵁ (Path.nil ↘.) = π := by | ||
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm π | ||
have := allPerm_of_smulFuzz (γ := β) (λ {δ} _ hδ ↦ eq_bot_of_lt_of_isMin hβ hδ ▸ ρ) ?_ | ||
· obtain ⟨ρ', hρ'⟩ := this | ||
use ρ' | ||
have := hρ' ⊥ (bot_lt_coe _) | ||
simp only at this | ||
cases this | ||
cases hρ | ||
simp only [allPermSderiv_forget, Tree.sderiv_apply] | ||
rfl | ||
· intro _ _ _ _ _ _ hε | ||
cases eq_bot_of_lt_of_isMin hβ hε | ||
|
||
omit [CoherentData] in | ||
theorem path_eq_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) (A : β ↝ ⊥) : | ||
A = Path.nil ↘. := by | ||
cases A | ||
case sderiv γ A h₁ h₂ => | ||
cases γ using recBotCoe | ||
case bot => cases not_lt_bot h₁ | ||
case coe γ => | ||
cases le_antisymm (coe_le_coe.mp A.le) (hβ (coe_le_coe.mp A.le)) | ||
cases Path.eq_nil A | ||
rfl | ||
|
||
theorem card_codingFunction_lt_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) : | ||
#(CodingFunction β) < #μ := by | ||
apply card_codingFunction_lt_of_card_supportOrbit_lt (2 ^ #κ) | ||
· exact μ_isStrongLimit.2 _ κ_lt_μ | ||
· apply card_supportOrbit_lt | ||
intro δ hδ | ||
cases eq_bot_of_lt_of_isMin hβ hδ | ||
exact card_bot_codingFunction_lt | ||
intro S | ||
apply le_trans ?_ (card_supports_le (S ⇘. (Path.nil ↘.))) | ||
refine mk_le_of_injective | ||
(f := λ x ↦ ⟨StrSet.botEquiv '' StrSet.coeEquiv x.valᵁ ⊥ (bot_lt_coe _), ?_⟩) ?_ | ||
· intro π hπ | ||
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm_of_isMin hβ π | ||
have := x.prop.supports ρ ?_ | ||
· have := congr_arg (λ x ↦ StrSet.botEquiv '' StrSet.coeEquiv xᵁ ⊥ (bot_lt_coe _)) this | ||
convert this using 1 | ||
cases hρ | ||
simp only [smul_forget, StrSet.strPerm_smul_coe] | ||
ext a | ||
constructor | ||
· rintro ⟨_, ⟨a, ha, rfl⟩, rfl⟩ | ||
refine ⟨ρᵁ ↘ (bot_lt_coe _) • a, ⟨a, ha, rfl⟩, ?_⟩ | ||
simp only [StrSet.strPerm_smul_bot, Tree.sderiv_apply] | ||
rfl | ||
· rintro ⟨_, ⟨a, ha, rfl⟩, rfl⟩ | ||
refine ⟨_, ⟨a, ha, rfl⟩, ?_⟩ | ||
simp only [StrSet.strPerm_smul_bot, Tree.sderiv_apply] | ||
rfl | ||
· apply Support.ext | ||
intro A | ||
cases path_eq_of_isMin hβ A | ||
rw [← hπ, ← hρ] | ||
rfl | ||
· intro x y h | ||
simp only [Subtype.mk.injEq, Equiv.image_eq_iff_eq] at h | ||
apply Subtype.coe_injective | ||
apply tSetForget_injective | ||
apply (StrSet.coeEquiv (α := β)).injective | ||
ext γ hγ : 2 | ||
cases eq_bot_of_lt_of_isMin hβ hγ | ||
rw [h] | ||
|
||
end ConNF |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters