Skip to content

Commit

Permalink
Count coding functions at bot and 0
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <[email protected]>
  • Loading branch information
zeramorphic committed Nov 2, 2024
1 parent 52a5a6b commit 660f5b7
Show file tree
Hide file tree
Showing 4 changed files with 167 additions and 2 deletions.
1 change: 1 addition & 0 deletions ConNF.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ import ConNF.Aux.Set
import ConNF.Aux.Transfer
import ConNF.Aux.WellOrder
import ConNF.Counting.BaseCoding
import ConNF.Counting.BaseCounting
import ConNF.Counting.CodingFunction
import ConNF.Counting.CountSupportOrbit
import ConNF.Counting.Recode
Expand Down
157 changes: 157 additions & 0 deletions ConNF/Counting/BaseCounting.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
import ConNF.Counting.BaseCoding
import ConNF.Counting.CountSupportOrbit

/-!
# Counting coding functions at level `⊥` and `0`
In this file, we show that there are less than `μ` coding functions at levels `⊥` and `0`.
## Main declarations
* `ConNF.card_bot_codingFunction_lt`, `ConNF.card_codingFunction_lt_of_isMin`: There are less than
`μ` coding functions at levels `⊥` and `0`.
-/

noncomputable section
universe u

open Cardinal Ordinal WithBot

namespace ConNF

variable [Params.{u}] [Level] [CoherentData]

theorem card_codingFunction_lt_of_card_supportOrbit_lt {β : TypeIndex} [LeLevel β]
(ν : Cardinal.{u}) (hν : ν < #μ)
(hβ : #(SupportOrbit β) < #μ)
(hνS : ∀ S : Support β, #{x : TSet β // S.Supports x} ≤ ν) :
#(CodingFunction β) < #μ := by
have := mk_le_of_surjective
(f := λ x : (o : SupportOrbit β) × {x : TSet β // o.out.Supports x} ↦
(Tangle.code ⟨x.2, x.1.out, x.2.prop⟩ : CodingFunction β)) ?_
· apply this.trans_lt
simp only [mk_sigma]
refine (sum_le_sum (g := λ _ ↦ ν) ?_ ?_).trans_lt ?_
· intro o
exact hνS o.out
· simp only [sum_const, Cardinal.lift_id]
exact mul_lt_of_lt μ_isStrongLimit.aleph0_le hβ hν
· intro χ
obtain ⟨S, x, hx⟩ := χ.rel_dom_nonempty
have : S.orbit = S.orbit.out.orbit := by rw [SupportOrbit.out_orbit (β := β)]
rw [Support.orbit_eq_iff] at this
obtain ⟨ρ, hρ⟩ := this
refine ⟨⟨S.orbit, ρ • x, ?_⟩, ?_⟩
· rw [← hρ]
exact (χ.supports_of_rel hx).smul ρ
refine CodingFunction.ext S x ?_ hx
dsimp only
refine ⟨ρ⁻¹, ?_, ?_⟩
· simp only [allPermForget_inv, ← hρ, inv_smul_smul]
· simp only [inv_smul_smul]

theorem card_bot_codingFunction_lt :
#(CodingFunction ⊥) < #μ := by
apply card_codingFunction_lt_of_card_supportOrbit_lt (2 ^ #κ)
· exact μ_isStrongLimit.2 _ κ_lt_μ
· apply card_supportOrbit_lt
intro δ hδ
cases not_lt_bot hδ
intro S
apply le_trans ?_ (card_supports_le (S ⇘. .nil))
refine mk_le_of_injective (f := λ x ↦ ⟨{StrSet.botEquiv x.valᵁ}, ?_⟩) ?_
· intro π hπ
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm π
have := x.prop.supports ρ ?_
· rw [Set.smul_set_singleton, Set.singleton_eq_singleton_iff]
have := congr_arg (λ x ↦ StrSet.botEquiv xᵁ) this
simp only [smul_forget, StrSet.strPerm_smul_bot, hρ] at this
exact this
· apply Support.ext
intro A
cases Path.eq_nil A
simp only [Support.smul_derivBot, hρ, hπ]
· intro x y h
rw [Subtype.mk.injEq, Set.singleton_eq_singleton_iff,
EmbeddingLike.apply_eq_iff_eq] at h
exact Subtype.coe_injective (tSetForget_injective h)

omit [CoherentData] in
theorem eq_bot_of_lt_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) {δ : TypeIndex} (hδ : δ < β) :
δ = ⊥ := by
cases δ using recBotCoe
case bot => rfl
case coe δ =>
cases hδ.not_le (coe_le_coe.mpr (hβ (coe_le_coe.mp hδ.le)))

theorem allPerm_of_basePerm_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) (π : BasePerm) :
∃ ρ : AllPerm β, ρᵁ (Path.nil ↘.) = π := by
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm π
have := allPerm_of_smulFuzz (γ := β) (λ {δ} _ hδ ↦ eq_bot_of_lt_of_isMin hβ hδ ▸ ρ) ?_
· obtain ⟨ρ', hρ'⟩ := this
use ρ'
have := hρ' ⊥ (bot_lt_coe _)
simp only at this
cases this
cases hρ
simp only [allPermSderiv_forget, Tree.sderiv_apply]
rfl
· intro _ _ _ _ _ _ hε
cases eq_bot_of_lt_of_isMin hβ hε

omit [CoherentData] in
theorem path_eq_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) (A : β ↝ ⊥) :
A = Path.nil ↘. := by
cases A
case sderiv γ A h₁ h₂ =>
cases γ using recBotCoe
case bot => cases not_lt_bot h₁
case coe γ =>
cases le_antisymm (coe_le_coe.mp A.le) (hβ (coe_le_coe.mp A.le))
cases Path.eq_nil A
rfl

theorem card_codingFunction_lt_of_isMin {β : Λ} [LeLevel β] (hβ : IsMin β) :
#(CodingFunction β) < #μ := by
apply card_codingFunction_lt_of_card_supportOrbit_lt (2 ^ #κ)
· exact μ_isStrongLimit.2 _ κ_lt_μ
· apply card_supportOrbit_lt
intro δ hδ
cases eq_bot_of_lt_of_isMin hβ hδ
exact card_bot_codingFunction_lt
intro S
apply le_trans ?_ (card_supports_le (S ⇘. (Path.nil ↘.)))
refine mk_le_of_injective
(f := λ x ↦ ⟨StrSet.botEquiv '' StrSet.coeEquiv x.valᵁ ⊥ (bot_lt_coe _), ?_⟩) ?_
· intro π hπ
obtain ⟨ρ, hρ⟩ := allPerm_of_basePerm_of_isMin hβ π
have := x.prop.supports ρ ?_
· have := congr_arg (λ x ↦ StrSet.botEquiv '' StrSet.coeEquiv xᵁ ⊥ (bot_lt_coe _)) this
convert this using 1
cases hρ
simp only [smul_forget, StrSet.strPerm_smul_coe]
ext a
constructor
· rintro ⟨_, ⟨a, ha, rfl⟩, rfl⟩
refine ⟨ρᵁ ↘ (bot_lt_coe _) • a, ⟨a, ha, rfl⟩, ?_⟩
simp only [StrSet.strPerm_smul_bot, Tree.sderiv_apply]
rfl
· rintro ⟨_, ⟨a, ha, rfl⟩, rfl⟩
refine ⟨_, ⟨a, ha, rfl⟩, ?_⟩
simp only [StrSet.strPerm_smul_bot, Tree.sderiv_apply]
rfl
· apply Support.ext
intro A
cases path_eq_of_isMin hβ A
rw [← hπ, ← hρ]
rfl
· intro x y h
simp only [Subtype.mk.injEq, Equiv.image_eq_iff_eq] at h
apply Subtype.coe_injective
apply tSetForget_injective
apply (StrSet.coeEquiv (α := β)).injective
ext γ hγ : 2
cases eq_bot_of_lt_of_isMin hβ hγ
rw [h]

end ConNF
3 changes: 2 additions & 1 deletion ConNF/Counting/CountSupportOrbit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@ In this file, we prove an upper bound on the amount of orbits of supports that c
## Main declarations
* `ConNF.card_supportOrbit_lt`: Something new.
* `ConNF.card_supportOrbit_lt`: The amount of support orbits is strictly less than `μ`, given
an inductive hypothesis about the amount of coding functions at lower levels.
-/

noncomputable section
Expand Down
8 changes: 7 additions & 1 deletion ConNF/Setup/ModelData.lean
Original file line number Diff line number Diff line change
Expand Up @@ -60,17 +60,22 @@ theorem Support.Supports.mono {X : Type _} {α : TypeIndex} [PreModelData α]
· exact hT

class ModelData (α : TypeIndex) extends PreModelData α where
tSetForget_injective' : Function.Injective tSetForget
allPermForget_injective' : Function.Injective allPermForget
allPermForget_one : (1 : AllPerm)ᵁ = 1
allPermForget_mul (ρ₁ ρ₂ : AllPerm) : (ρ₁ * ρ₂)ᵁ = ρ₁ᵁ * ρ₂ᵁ
smul_forget (ρ : AllPerm) (x : TSet) : (ρ • x)ᵁ = ρᵁ • xᵁ
exists_support (x : TSet) : ∃ S : Support α, S.Supports x

export ModelData (allPermForget_injective' allPermForget_one allPermForget_mul
export ModelData (tSetForget_injective' allPermForget_injective' allPermForget_one allPermForget_mul
smul_forget exists_support)

attribute [simp] allPermForget_one allPermForget_mul smul_forget

theorem tSetForget_injective {α : TypeIndex} [ModelData α] {x₁ x₂ : TSet α}
(h : x₁ᵁ = x₂ᵁ) : x₁ = x₂ :=
tSetForget_injective' h

theorem allPermForget_injective {α : TypeIndex} [ModelData α] {ρ₁ ρ₂ : AllPerm α}
(h : ρ₁ᵁ = ρ₂ᵁ) : ρ₁ = ρ₂ :=
allPermForget_injective' h
Expand Down Expand Up @@ -226,6 +231,7 @@ def botPreModelData : PreModelData ⊥ where
allPermForget ρ _ := ρ

def botModelData : ModelData ⊥ where
tSetForget_injective' := Equiv.injective _
allPermForget_injective' _ _ h := congr_fun h Path.nil
allPermForget_one := rfl
allPermForget_mul _ _ := rfl
Expand Down

0 comments on commit 660f5b7

Please sign in to comment.