Skip to content

Commit

Permalink
remove commented out dead code
Browse files Browse the repository at this point in the history
  • Loading branch information
kbuzzard committed Nov 12, 2023
1 parent c67e3fb commit dff90d7
Showing 1 changed file with 2 additions and 17 deletions.
19 changes: 2 additions & 17 deletions Game/MyNat/LE.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,22 +16,7 @@ def le (a b : ℕ) := ∃ (c : ℕ), b = a + c
-- notation
instance : LE MyNat := ⟨MyNat.le⟩

--@[leakage] theorem le_def' : MyNat.le = (≤) := rfl

theorem le_iff_exists_add (a b : ℕ) : a ≤ b ↔ ∃ (c : ℕ), b = a + c := Iff.rfl

example (a b : Nat) : a ≤ b ↔ ∃ c, b = a + c := by exact _root_.le_iff_exists_add

-- @[MyNat_decide]
-- theorem toNat_le (m n : MyNat) : m ≤ n ↔ m.toNat ≤ n.toNat :=
-- ⟨ fun ⟨a, ha⟩ ↦ _root_.le_iff_exists_add.2 ⟨toNat a, by simp [ha, MyNat_decide]⟩,
-- by
-- intro h
-- rw [_root_.le_iff_exists_add] at h
-- cases' h with c hc
-- use ofNat c
-- simp [MyNat_decide, hc]⟩

-- induction n <;> simp [MyNat_decide, *, Nat.pow_zero, Nat.pow_succ];
-- We don't use this any more; I tell the users `≤` is *notation*
-- theorem le_iff_exists_add (a b : ℕ) : a ≤ b ↔ ∃ (c : ℕ), b = a + c := Iff.rfl

end MyNat

0 comments on commit dff90d7

Please sign in to comment.