Skip to content

This is an interview challenge for Paytm Labs. Please feel free to fork. Pull Requests will be ignored.

Notifications You must be signed in to change notification settings

kaushikCanada/WeblogChallenge

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

WeblogChallenge

This is an interview challenge for Paytm Labs. Please feel free to fork. Pull Requests will be ignored.

The challenge is to make make analytical observations about the data using the distributed tools below.

To run this first do python3 -m venv env and then pip install -r requirements.txt

Processing & Analytical goals:

  1. Sessionize the web log by IP. Sessionize = aggregrate all page hits by visitor/IP during a session. https://en.wikipedia.org/wiki/Session_(web_analytics)

  2. Determine the average session time

  3. Determine unique URL visits per session. To clarify, count a hit to a unique URL only once per session.

  4. Find the most engaged users, ie the IPs with the longest session times

Additional questions for Machine Learning Engineer (MLE) candidates:

  1. Predict the expected load (requests/second) in the next minute

  2. Predict the session length for a given IP

  3. Predict the number of unique URL visits by a given IP

Tools allowed (in no particular order):

  • Spark (any language, but prefer Scala or Java)
  • Pig
  • MapReduce (Hadoop 2.x only)
  • Flink
  • Cascading, Cascalog, or Scalding

If you need Hadoop, we suggest HDP Sandbox: http://hortonworks.com/hdp/downloads/ or CDH QuickStart VM: http://www.cloudera.com/content/cloudera/en/downloads.html

Additional notes:

  • You are allowed to use whatever libraries/parsers/solutions you can find provided you can explain the functions you are implementing in detail.
  • IP addresses do not guarantee distinct users, but this is the limitation of the data. As a bonus, consider what additional data would help make better analytical conclusions
  • For this dataset, complete the sessionization by time window rather than navigation. Feel free to determine the best session window time on your own, or start with 15 minutes.
  • The log file was taken from an AWS Elastic Load Balancer: http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/access-log-collection.html#access-log-entry-format

How to complete this challenge:

A. Fork this repo in github https://github.com/PaytmLabs/WeblogChallenge

B. Complete the processing and analytics as defined first to the best of your ability with the time provided.

C. Place notes in your code to help with clarity where appropriate. Make it readable enough to present to the Paytm Labs interview team.

D. Complete your work in your own github repo and send the results to us and/or present them during your interview.

What are we looking for? What does this prove?

We want to see how you handle:

  • New technologies and frameworks
  • Messy (ie real) data
  • Understanding data transformation This is not a pass or fail test, we want to hear about your challenges and your successes with this particular problem.

About

This is an interview challenge for Paytm Labs. Please feel free to fork. Pull Requests will be ignored.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%