Skip to content

kap-devkota/GLIDER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GLIDETOOLS: A python based package for computing Diffusion State Distance and GLIDE

Licensing

This code is copyrighted under the MIT License.

Publications

GLIDE: Devkota, Kapil, James M. Murphy, and Lenore J. Cowen. "GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks." Bioinformatics 36.Supplement_1 (2020): i464-i473.

GLIDER: Devkota, K., Schmidt, H., Werenski, M., Murphy, J.M., Erden, M., Arsenescu, V. and Cowen, L.J., 2022. GLIDER: Function Prediction from GLIDE-based Neigborhoods. Bioinformatics.

DSD: Cao, Mengfei, et al. "New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence." Bioinformatics 30.12 (2014): i219-i227.

Dependencies

This package requires the following dependencies:

  1. numpy
  2. scipy
  3. pandas
  4. matplotlib
  5. json
  6. networkx

How to install

You can install the package using pip.

pip install glidetools

You can also go to the glidetools repository at https://github.com/kap-devkota/GLIDER and clone the latest version under the main branch. After you enter the glidetools folder, run

python -m pip install glidetools

Package Description

Computing DSD matrix

This can be done by using the function glidetools.algorithm.dsd:compute_dsd_embedding

def compute_dsd_embedding(A, 
                        t = -1, 
                        gamma = 1, 
                        is_normalized = True)

Where,

  • A: a numpy adjacency matrix (N x N)
  • t: The number of random walks to get the DSD matrix. Setting t to a negative value implies t is infinity.
  • gamma: Set it to 1 to get the default cDSD embedding
  • is_normalized: If set to True, a normalized form of cDSD (by the steady state vector) is returned

This function returns a (N x N) cDSD embedding. Note: The output is an embedding, not a distance. To compute the cDSD distance, do the following

from scipy.spatial.distance import squareform, pdist
squareform(pdist(X))

Where, X is the output from the compute_dsd_embedding function.

Computing the GLIDE Matrix

This can be done by using the function glidetools.algorithm.glide:glide

def glide(A, 
          alpha = 0.1,
          beta  = 1000,
          delta = 1,
          gamma = 1,
          normalize_dsd = False,
          local = "",
          **kwargs)

Where,

  • A : A N x N numpy matrix
  • alpha, beta, delta, gamma => glide parameters: For more information, see :
  • normalize_dsd: If set to True, generates the normalized version of DSD embedding
  • local: Can be either cw(common weighted) or l3.

You can also provide your own local and global functions for GLIDE

  • localf: a custom function that takes in adjacency matrix and returns the local pairwise score
  • globalf: a custom function that takes in adjacency matrix and returns the global pairwise score

Using glide_compute

If you have installed the pip package, you can the entrypoint glide_compute to obtain both the DSD and GLIDE outputs.

usage: glide-compute [-h] [--network NETWORK] [--output OUTPUT] [-v] [--return-dsd-emb] [--return-dsd-dist] [--dsd-dist-norm {l1,l2}] [--normalized] [--reduced-dims REDUCED_DIMS] [--gamma GAMMA] [--get-glide-neighbors]
                     [--glide-neighbors-k GLIDE_NEIGHBORS_K] [--neighbors-return-format {dataframe,graph,map}] [--alpha ALPHA] [--beta BETA] [--delta DELTA] [--local {cw,l3}] [--normalize-local] [--weighted-local] [--scale-local]

optional arguments:
  -h, --help            show this help message and exit
  --network NETWORK     A Tab-delimited network file
  --output OUTPUT       The output URL. If the output is a matrix, it is always saved in a pickle format along with the name-to-index mapping dictionary
  -v                    Verbose mode
  --return-dsd-emb      If set to True, only returns the DSD embedding, else returns the GLIDE matrix
  --return-dsd-dist     If set to True, bypasses the --return-dsd-emb command to return the pairwise distance matrix from the dsd embedding
  --dsd-dist-norm {l1,l2}
                        Only used in conjunction with the --return-dsd-dist argument. Decides whether to use the `l1` or `l2` norm while computing distance
  --normalized          If set to false, returns the classic cDSD, else returns normalized cDSD embedding.
  --reduced-dims REDUCED_DIMS
                        If set to a positive value, the output is a reduced normalized DSD with reduced dimensions given by --reduced_dims
  --gamma GAMMA         DSD gamma parameter
  --get-glide-neighbors
                        If set to true, --get_glide_neighbors returns glide neighbors instead of glide matrix
  --glide-neighbors-k GLIDE_NEIGHBORS_K
                        If --get_glide_neighbors is set to true, the code uses --glide_neighbors to decide on the number of neighbors
  --neighbors-return-format {dataframe,graph,map}
                        This parameter decides the output format for the GLIDE neighbors. If `dataframe` is selected, the code returns output as a panda DataFrame.If `graph` is selected, the code returns output as a networkx graph,
                        otherwise the output is returned as a simple dictionary {NODE: LIST[NODE]}, where LIST[NODE]is the list of neighbors for the particular node
  --alpha ALPHA         GLIDE alpha parameter
  --beta BETA           GLIDE beta parameter
  --delta DELTA         GLIDE delta parameter
  --local {cw,l3}       The local parameter for GLIDE
  --normalize-local     If set to False, the local measures are not normalized
  --weighted-local      If set to False, the adjacency matrix is converted to a unweighted form (setting every non-zero elements to 1)before applying local measures
  --scale-local         If set to True, scales the local measures by their max value before returning it

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published