Skip to content

ReeseAGI.py is an advanced Artificial General Intelligence (AGI) system, integrating knowledge representation, reasoning, self-improvement, and quantum processing. It processes input data to make decisions ('BUY' or 'SELL'), evaluates performance, and optimizes itself for higher accuracy. Developed by Jonathan Reese, Reeselimitedllc.

Notifications You must be signed in to change notification settings

kalihatreese/ReeseAGI.py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
import randomimport numpy as npfrom sklearn.metrics import accuracy_scoreclass KnowledgeGraph: def __init__(self): self.entities = {} self.relationships = {} def update(self, input_data): for entity in input_data.get('entities', []): self.entities[entity['id']] = entity for relationship in entity.get('relationships', []): self.relationships[relationship['id']] = relationship def query(self, query): results = [] for entity in self.entities.values(): if query in entity.get('properties', []): results.append(entity) return resultsclass ReasoningEngine: def __init__(self, knowledge_graph): self.knowledge_graph = knowledge_graph self.rules = {} def reason_about_data(self, input_data): conclusions = [] for entity in input_data.get('entities', []): for relationship in entity.get('relationships', []): if relationship['type'] == 'causes': conclusions.append((entity['id'], relationship['target'])) return conclusions def get_decision(self, conclusions): decision = None for conclusion in conclusions: if conclusion[1] == 'buy': decision = 'BUY' elif conclusion[1] == 'sell': decision = 'SELL' return decision def add_rule(self, rule): self.rules[rule['id']] = rule def apply_rules(self, conclusions): for rule in self.rules.values(): if rule['condition'] in conclusions: conclusions.append(rule['conclusion']) return conclusionsclass SelfImprovementMechanism: def __init__(self): self.performance_metrics = {'accuracy': 0, 'total': 0} def evaluate_performance(self, decision, outcome): self.performance_metrics['total'] += 1 if (decision == 'BUY' and outcome == 'profit') or (decision == 'SELL' and outcome == 'loss'): self.performance_metrics['accuracy'] += 1 def improve_performance(self, reasoning_engine): if self.get_accuracy() > 0.5:
import randomimport numpy as npfrom sklearn.metrics import accuracy_scoreclass KnowledgeGraph: def __init__(self): self.entities = {} self.relationships = {} def update(self, input_data): for entity in input_data.get('entities', []): self.entities[entity['id']] = entity for relationship in entity.get('relationships', []): self.relationships[relationship['id']] = relationship def query(self, query): results = [] for entity in self.entities.values(): if query in entity.get('properties', []): results.append(entity) return resultsclass ReasoningEngine: def __init__(self, knowledge_graph): self.knowledge_graph = knowledge_graph self.rules = {} def reason_about_data(self, input_data): conclusions = [] for entity in input_data.get('entities', []): for relationship in entity.get('relationships', []): if relationship['type'] == 'causes': conclusions.append((entity['id'], relationship['target'])) return conclusions def get_decision(self, conclusions): decision = None for conclusion in conclusions: if conclusion[1] == 'buy': decision = 'BUY' elif conclusion[1] == 'sell': decision = 'SELL' return decision def add_rule(self, rule): self.rules[rule['id']] = rule def apply_rules(self, conclusions): for rule in self.rules.values(): if rule['condition'] in conclusions: conclusions.append(rule['conclusion']) return conclusionsclass SelfImprovementMechanism: def __init__(self): self.performance_metrics = {'accuracy': 0, 'total': 0} def evaluate_performance(self, decision, outcome): self.performance_metrics['total'] += 1 if (decision == 'BUY' and outcome == 'profit') or (decision == 'SELL' and outcome == 'loss'): self.performance_metrics['accuracy'] += 1 def improve_performance(self, reasoning_engine): if self.get_accuracy() > 0.5:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

About

ReeseAGI.py is an advanced Artificial General Intelligence (AGI) system, integrating knowledge representation, reasoning, self-improvement, and quantum processing. It processes input data to make decisions ('BUY' or 'SELL'), evaluates performance, and optimizes itself for higher accuracy. Developed by Jonathan Reese, Reeselimitedllc.

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published