-
Notifications
You must be signed in to change notification settings - Fork 477
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add runtime support for wespeaker models (#516)
- Loading branch information
1 parent
902b218
commit 5526691
Showing
27 changed files
with
1,291 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
This script shows how to use Python APIs for speaker identification. | ||
Usage: | ||
(1) Prepare a text file containing speaker related files. | ||
Each line in the text file contains two columns. The first column is the | ||
speaker name, while the second column contains the wave file of the speaker. | ||
If the text file contains multiple wave files for the same speaker, then the | ||
embeddings of these files are averaged. | ||
An example text file is given below: | ||
foo /path/to/a.wav | ||
bar /path/to/b.wav | ||
foo /path/to/c.wav | ||
foobar /path/to/d.wav | ||
Each wave file should contain only a single channel; the sample format | ||
should be int16_t; the sample rate can be arbitrary. | ||
(2) Download a model for computing speaker embeddings | ||
Please visit | ||
https://github.com/k2-fsa/sherpa-onnx/releases/tag/speaker-recongition-models | ||
to download a model. An example is given below: | ||
wget https://github.com/k2-fsa/sherpa-onnx/releases/download/speaker-recongition-models/zh_cnceleb_resnet34.onnx | ||
Note that `zh` means Chinese, while `en` means English. | ||
(3) Run this script | ||
Assume the filename of the text file is speaker.txt. | ||
python3 ./python-api-examples/speaker-identification.py \ | ||
--speaker-file ./speaker.txt \ | ||
--model ./zh_cnceleb_resnet34.onnx | ||
""" | ||
import argparse | ||
import queue | ||
import threading | ||
from collections import defaultdict | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import numpy as np | ||
import sherpa_onnx | ||
import torchaudio | ||
|
||
try: | ||
import sounddevice as sd | ||
except ImportError: | ||
print("Please install sounddevice first. You can use") | ||
print() | ||
print(" pip install sounddevice") | ||
print() | ||
print("to install it") | ||
sys.exit(-1) | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--speaker-file", | ||
type=str, | ||
required=True, | ||
help="""Path to the speaker file. Read the help doc at the beginning of this | ||
file for the format.""", | ||
) | ||
|
||
parser.add_argument( | ||
"--model", | ||
type=str, | ||
required=True, | ||
help="Path to the model file.", | ||
) | ||
|
||
parser.add_argument("--threshold", type=float, default=0.6) | ||
|
||
parser.add_argument( | ||
"--num-threads", | ||
type=int, | ||
default=1, | ||
help="Number of threads for neural network computation", | ||
) | ||
|
||
parser.add_argument( | ||
"--debug", | ||
type=bool, | ||
default=False, | ||
help="True to show debug messages", | ||
) | ||
|
||
parser.add_argument( | ||
"--provider", | ||
type=str, | ||
default="cpu", | ||
help="Valid values: cpu, cuda, coreml", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def load_speaker_embedding_model(args): | ||
config = sherpa_onnx.SpeakerEmbeddingExtractorConfig( | ||
model=args.model, | ||
num_threads=args.num_threads, | ||
debug=args.debug, | ||
provider=args.provider, | ||
) | ||
if not config.validate(): | ||
raise ValueError(f"Invalid config. {config}") | ||
extractor = sherpa_onnx.SpeakerEmbeddingExtractor(config) | ||
return extractor | ||
|
||
|
||
def load_speaker_file(args) -> Dict[str, List[str]]: | ||
if not Path(args.speaker_file).is_file(): | ||
raise ValueError(f"--speaker-file {args.speaker_file} does not exist") | ||
|
||
ans = defaultdict(list) | ||
with open(args.speaker_file) as f: | ||
for line in f: | ||
line = line.strip() | ||
if not line: | ||
continue | ||
|
||
fields = line.split() | ||
if len(fields) != 2: | ||
raise ValueError(f"Invalid line: {line}. Fields: {fields}") | ||
|
||
speaker_name, filename = fields | ||
ans[speaker_name].append(filename) | ||
return ans | ||
|
||
|
||
def load_audio(filename: str) -> Tuple[np.ndarray, int]: | ||
samples, sample_rate = torchaudio.load(filename) | ||
return samples[0].contiguous().numpy(), sample_rate | ||
|
||
|
||
def compute_speaker_embedding( | ||
filenames: List[str], | ||
extractor: sherpa_onnx.SpeakerEmbeddingExtractor, | ||
) -> np.ndarray: | ||
assert len(filenames) > 0, f"filenames is empty" | ||
|
||
ans = None | ||
for filename in filenames: | ||
print(f"processing {filename}") | ||
samples, sample_rate = load_audio(filename) | ||
stream = extractor.create_stream() | ||
stream.accept_waveform(sample_rate=sample_rate, waveform=samples) | ||
stream.input_finished() | ||
|
||
assert extractor.is_ready(stream) | ||
embedding = extractor.compute(stream) | ||
embedding = np.array(embedding) | ||
if ans is None: | ||
ans = embedding | ||
else: | ||
ans += embedding | ||
|
||
return ans / len(filenames) | ||
|
||
|
||
g_buffer = queue.Queue() | ||
g_stop = False | ||
g_sample_rate = 16000 | ||
g_read_mic_thread = None | ||
|
||
|
||
def read_mic(): | ||
print("Please speak!") | ||
samples_per_read = int(0.1 * g_sample_rate) # 0.1 second = 100 ms | ||
with sd.InputStream(channels=1, dtype="float32", samplerate=g_sample_rate) as s: | ||
while not g_stop: | ||
samples, _ = s.read(samples_per_read) # a blocking read | ||
g_buffer.put(samples) | ||
|
||
|
||
def main(): | ||
args = get_args() | ||
print(args) | ||
extractor = load_speaker_embedding_model(args) | ||
speaker_file = load_speaker_file(args) | ||
|
||
manager = sherpa_onnx.SpeakerEmbeddingManager(extractor.dim) | ||
for name, filename_list in speaker_file.items(): | ||
embedding = compute_speaker_embedding( | ||
filenames=filename_list, | ||
extractor=extractor, | ||
) | ||
status = manager.add(name, embedding) | ||
if not status: | ||
raise RuntimeError(f"Failed to register speaker {name}") | ||
|
||
devices = sd.query_devices() | ||
if len(devices) == 0: | ||
print("No microphone devices found") | ||
sys.exit(0) | ||
|
||
print(devices) | ||
default_input_device_idx = sd.default.device[0] | ||
print(f'Use default device: {devices[default_input_device_idx]["name"]}') | ||
|
||
global g_stop | ||
global g_read_mic_thread | ||
while True: | ||
key = input("Press enter to start recording") | ||
if key.lower() in ("q", "quit"): | ||
g_stop = True | ||
break | ||
|
||
g_stop = False | ||
g_buffer.queue.clear() | ||
g_read_mic_thread = threading.Thread(target=read_mic) | ||
g_read_mic_thread.start() | ||
input("Press enter to stop recording") | ||
g_stop = True | ||
g_read_mic_thread.join() | ||
print("Compute embedding") | ||
stream = extractor.create_stream() | ||
while not g_buffer.empty(): | ||
samples = g_buffer.get() | ||
stream.accept_waveform(sample_rate=g_sample_rate, waveform=samples) | ||
stream.input_finished() | ||
|
||
embedding = extractor.compute(stream) | ||
embedding = np.array(embedding) | ||
name = manager.search(embedding, threshold=args.threshold) | ||
if not name: | ||
name = "unknown" | ||
print(f"Predicted name: {name}") | ||
|
||
|
||
if __name__ == "__main__": | ||
try: | ||
main() | ||
except KeyboardInterrupt: | ||
print("\nCaught Ctrl + C. Exiting") | ||
g_stop = True | ||
if g_read_mic_thread.is_alive(): | ||
g_read_mic_thread.join() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.