Skip to content

johnchars/ORB_SLAM

 
 

Repository files navigation

ORB—SLAM安装


机器型号

硬件:XbotU-bj008

系统:Ubuntu 16.04.1

ROS版本:Kinect 1.12.14

提供脚本安装方式

# 打开 https://github.com/johnchars/ORB_SLAM
# 下载install.bash 
./install.bash

raulmur的readme.md 安装

依赖项安装
  • Boost

    sudo apt-get install libboost-all-dev

    Boost 库用于同时启动不同的线程,ORB-SLAM分为三个线程Tracking, Local Mapping and Loop Closing

  • ROS

    参考官方wiki

  • OpenCV

    cd && mkdir Repo && cd Repo
    git clone https://github.com/opencv/opencv.git
    cd opencv
    git branch -a
    git checkout origin/2.4
    git branch -m origin/2.4 opencv-2.4
    git branch 
    mkdir build && cd build
    cmake .. && make -j4
    sudo make install 

    这里也可以使用官网下载,注意选择2.4版本; make -j*中数字可以自己决定

  • g2o

    	sudo apt-get install libeigen3-dev

    安装g2o图优化库需要安装eigen库,使用了一个修改过的g2o库,在Thirdparty/下有这个库,不需要下载

  • DBow2

    同样的第三库,在Thirdparty/下有这个库,用于回环检测。

编译安装
  1. 创建一个安装位置

    cd && mkdir -p slam_ws/src && cd slam_ws/src
    catkin_init_workspace
    cd .. && catkin_make
    echo "source ~/slam_ws/devel/setup.bash" >> ~/.bashrc
    git clone https://github.com/raulmur/ORB_slam_ws.git ORB_slam_ws
  2. [TODO] 修改环境变量 ROS_PAKCAGE_PATH,在~/.bashrc末尾增加

    export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:/home/xbot/slam_ws/src

  3. 编译g2o

    cd ~/slam_ws/src/ORB_SLAM/Thirdparty/g2o/
    mkdir build && cd build
    cmake .. -DCMAKE_BUILD_TYPE=Release
    make -j4
  4. 编译DBoW2

    cd ../../DBoW2
    mkdir build && cd build
    cmake .. -DCMAKE_BUILD_TYPE=Release
    make -j4
  5. 编译ORB_SLAM

    删除manifest.xml 中的

    在ORBextractor.cc中添加头文件,路径是/home/xbot/slam_ws/src/ORB_SLAM/src

    #include <opencv2/features2d/features2d.hpp>

    #include <opencv2/imgproc/imgproc.hpp>

    在/home/xbot/slam_ws/Thirdparty/g2o/g2o/solvers中的linear_solver_eigen.h中修改

    56: typedef Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic, SparseMatrix::Index> PermutationMatrix;
    修改为
    56: typedef Eigen::PermutationMatrix<Eigen::Dynamic, Eigen::Dynamic> PermutationMatrix;

    在/home/xbot/slam_ws/src/ORB_slam_ws下修改CMakeLists.txt文件,增加

    find_package(Boost COMPONENTS system)
    
    include_directories(
    ${Boost_INCLUDE_DIRS} // adding this line
    )
    target_link_libraries(${PROJECT_NAME}
    ${Boost_LIBRARIES}
    )

    开始编译...

    cd ~/slam_ws/src/ORB_SLAM/
    mkdir build && cd build
    cmake .. -DROS_BUILD_TYPE=Release
    make -j4
    编译成功显示
    Build type: RelWithDebInfo
    -- Boost version: 1.58.0
    -- Found the following Boost libraries:
    --   system
    -- Configuring done
    -- Generating done
    -- Build files have been written to: /home/xbot/slam_ws/src/ORB_SLAM/build
    [  0%] Built target rospack_genmsg_libexe
    [  0%] Built target rosbuild_precompile
    [  5%] Linking CXX executable ../bin/ORB_SLAM
    [100%] Built target ORB_SLAM
  6. 可能的编译错误解决

  • 'FAST' was not declared in this scope FAST(cellImage, cellKeyPoints [i] [j], fastTh, true);

解决方法GitHub #44

在src/ORBextractor.cc中增加

#include <opencv2/opencv.hpp>

增加在#include <opencv2/core/core.hpp>前

  • DSO missing from command line

解决方Github#552

在CMakeLists.txt中增加Boost头文件

include_directories(

${Boost_INCLUDE_DIRS} #增加这一行

)

  • cmake Configuring incomplete, errors occurred!

    解决方法,检查ROS_PACKAGE_PATH路径,在.bashrc文件下

  • 其他问题可以在ORB_SLAM下检索关键词

运行

a. 解压Data下的词库和设置文件

cd /home/xbot/slam_ws/src/ORB_SLAM/Data
xbot@nuc:~/slam_ws/src/ORB_SLAM/Data$ tar xzvf ORBvoc.txt.tar.gz 
ls 
增加 ORBvoc.txt文件

b.逐个文件启动

Ctrl+Alt+t
roscore
Ctrl+Alt+t
cd /home/xbot/slam_ws/src/ORB_SLAM
rosrun ORB_SLAM ORB_SLAM Data/ORBvoc.txt Data/Setting.yaml

[todo] adding picture orb_node_success

Ctrl+Alt+t
rosrun image_view image_view image:=/ORB_SLAM/Frame _autosize:=true

[todo] adding picture

cd /home/xbot/slam_ws/src/ORB_SLAM
rosrun rviz rviz -d Data/rviz.rviz

[todo] adding picture orb_rviz_d

c.使用launch文件启动

cd /home/xbot/slam_ws/src/ORB_SLAM
roslaunch ExampleGroovyOrNewer.launch

d. 使用Example.bag 检测安装是否成功

[todo] 效果图

特别感谢这篇教程,解决了一周的难受

使用单目摄像头

这里需要注意的是ORB_slam_ws只接收来自名为/camera/image_raw的topic信息,如果使用单目摄像头如logitech c270i或者Realsense D415的color camera,需要修改topic名称。

首先标定摄像头的内参矩阵,可以通过OpenCV,MATLAB,ROS等方式得到

内容一般包含

Camera intrinsic matrix: 
[708.0230464853036, 0, 313.299267971209;
 0, 714.8509096655857, 189.0366118434282;
 0, 0, 1]

Distorted arguments: 
[-0.09135352304365538, 0.9392941836066392, -0.00487793090233253, -0.005752201943911559, -2.133389933308491]

其中 3*3矩阵对应着 fx=708.023,fy=714.850,cx=313.2992,cy=189.0366

畸变系数k1=-0.0913, k2=0.9393, p1=-0.0049, p2=-0058。

如果使用的是webcam,也就是USB插入的摄像头,需要引入一个节点发布image消息,参考publisher_image

如果使用的是D415,可以在rs_camera.launch文件中对应的nodelet.launch.xml文件中增加remap

<node pkg="nodelet" type="nodelet" name="realsense2_camera" args="load realsense2_camera/RealSenseNodeFactory $(arg manager)">
    <remap from="/camera/color/image_raw" to="/camera/image_raw" /> 

再启动rs_camera.launch即可通过摄像头来使用ORB

About

A Versatile and Accurate Monocular SLAM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 98.6%
  • CMake 1.1%
  • Shell 0.3%