Skip to content

Commit

Permalink
add: 3 papers
Browse files Browse the repository at this point in the history
  • Loading branch information
jindongwang committed May 22, 2024
1 parent 12f9842 commit aa6ee9f
Show file tree
Hide file tree
Showing 3 changed files with 68 additions and 52 deletions.
59 changes: 7 additions & 52 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,61 +67,16 @@ Related Codes:
- By topic: [doc/awesome_papers.md](/doc/awesome_paper.md)
- By date: [doc/awesome_paper_date.md](/doc/awesome_paper_date.md)

*Updated at 2024-04-25:*
*Updated at 2024-05-22:*

- MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition [[arxiv](https://arxiv.org/abs/2404.15615)]
- Manifold-based domain adaptation for EEG-based emotion recognition 基于流形的DA用于EEG情绪识别
- Transfer Learning for CSI-based Positioning with Multi-environment Meta-learning [[arxiv](https://arxiv.org/abs/2405.11816)]
- Transfer learning for CSI-based positioning 用迁移学习进行基于CSI的定位

- Domain Adaptation for Learned Image Compression with Supervised Adapters [[arxiv](https://arxiv.org/abs/2404.15591)]
- Domain adaptation for learned image compression DA用于图片压缩
- Versatile Teacher: A Class-aware Teacher-student Framework for Cross-domain Adaptation [[arxiv](https://arxiv.org/abs/2405.11754)]
- Teacher-student framework for cross-domain adaptation 教师-学生框架进行跨领域适配

- Test-Time Training on Graphs with Large Language Models (LLMs) [[arxiv](https://arxiv.org/abs/2404.13571)]
- Test-time training on graphs with LLMs 使用大语言模型在图上进行测试时训练

*Updated at 2024-04-18:*

- DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series [[arxiv](https://arxiv.org/abs/2404.11269)]
- Domain adaptation for anomaly detection 使用域自适应进行时间序列异常检测

- CVPR'24 Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [[arxiv](https://arxiv.org/abs/2404.11207)]
- Explore the transferability of visual prompting for multimodal LLM 探索多模态大模型visual prompt tuning的可迁移性

*Updated at 2024-04-16:*

- DGMamba: Domain Generalization via Generalized State Space Model [[arXiv](https://arxiv.org/abs/2404.07794)]
- Domain generalization using mamba 用Mamba结构进行DG

- CVPR'24 Unified Language-driven Zero-shot Domain Adaptation [[arxiv](https://arxiv.org/abs/2404.07155)]
- Language-driven zero-shot domain adaptation 语言驱动的零样本 DA

*Updated at 2024-04-01:*

- ICASSP'24 Learning Inference-Time Drift Sensor-Actuator for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447537?casa_token=6xrw2hE7cVEAAAAA:9i_ITqbfyLTzQYjdp4Oi16ziD8uheMMZJHRn4gHmzl9nN_j2c5u8MBxUtYYdzlj1Vn4l8F5OJnrw3BY)]
- Inference-time drift actuator for OOD generalization

- ICASSP'24 SBM: Smoothness-Based Minimization for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446613?casa_token=kO10uC18NMQAAAAA:6WJvMr57dSMyORMAnBgFGXi01aE_AmIAA6CQINztT7pHG2u8RmojDxMdV09UO6O9IfFsVEJDrYl1uiU)]
- Smoothness-based minimization for OOD generalization

- ICASSP'24 G2G: Generalized Learning by Cross-Domain Knowledge Transfer for Federated Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447043?casa_token=ihJ_LaxqnfUAAAAA:8Petax0UdQ9bvJLrRbFrujWcVjDzIckhYLDvIk-rUZxo-S7pa6xgbGBxkLWjs8c8H1jR4E8Rop8e7cc)]
- Federated domain generalization

- ICASSP'24 Single-Source Domain Generalization in Fundus Image Segmentation Via Moderating and Interpolating Input Space Augmentation [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447741?casa_token=t0FGpPfYxeoAAAAA:yyZ1zKhXstoaxNOtP6zKBj1ArLF8JZ7gGQOtR-k6DAHCO9SWTIOwLG5TF71BrcenWvO002MYku-wtQI)]
- Single-source DG in fundus image segmentation

- ICASSP'24 Style Factorization: Explore Diverse Style Variation for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447540?casa_token=inLqNDEGEjQAAAAA:7jNUOViyS9PIn-BwIV0LJ-5oCzmM7BXpMLfyLosedaxmxZ-_c_2sA615GlCgrlwaspjdVKa4eogm6Z4)]
- Style variation for domain generalization

- ICASSP'24 SPDG-Net: Semantics Preserving Domain Augmentation through Style Interpolation for Multi-Source Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447210?casa_token=NSBeXUg0AdUAAAAA:4rrMR38UcDN2YRzD9Fvm42gT3dyEX5lO0arFkmVIu3VwQLT9UFLAmU3a5ZOfxtr812_Fic1SCcw9mr0)]
- Domain augmentation for multi-source DG

- ICASSP'24 Domaindiff: Boost out-of-Distribution Generalization with Synthetic Data [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446788?casa_token=Rh3MGM6szOQAAAAA:0GRegU3dIidLVvIYtJb97m2ZDCl0wwKVTmTZH7XTE0fzEBmRuwJHSn_T1U6NgwSYHFPKlWHox_BO4Eg)]
- Using synthetic data for OOD generalization

- ICASSP'24 Multi-Level Augmentation Consistency Learning and Sample Selection for Semi-Supervised Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446462?casa_token=vfAJ1GINr0AAAAAA:YS4NVt-kR8-sJqhfo6H7d04ZmckxUUpsIYuy2agnB4IpgCnR7xOzyrNv59MZ2lcbVhNvsN6Cl4p_7YI)]
- Multi-level augmentation for semi-supervised domain generalization

- ICASSP'24 MMS: Morphology-Mixup Stylized Data Generation for Single Domain Generalization in Medical Image Segmentation [[IEEE](https://ieeexplore.ieee.org/abstract/document/10448305?casa_token=14-2Vm39RD4AAAAA:Zmzm9KTl3INP2I83T2MLwQXtHUZKwXYfhDOPU9F0Eu9SrznInqGpSBrMYH0ek3eemDKdyL4bBU6EVaY)]
- Morphology-mixup for domain generalization
- MICCAI'24 MediCLIP: Adapting CLIP for Few-shot Medical Image Anomaly Detection [[arxiv](https://arxiv.org/abs/2405.11315)]
- Adapting clip for few-shot medical image anomaly detection 对CLIP模型进行适配,以用于少样本图片异常检测

- - -

Expand Down
9 changes: 9 additions & 0 deletions doc/awesome_paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,9 @@ Here, we list some papers by topic. For list by date, please refer to [papers by

## Per-training/Finetuning

- Transfer Learning for CSI-based Positioning with Multi-environment Meta-learning [[arxiv](https://arxiv.org/abs/2405.11816)]
- Transfer learning for CSI-based positioning 用迁移学习进行基于CSI的定位

- CVPR'24 Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [[arxiv](https://arxiv.org/abs/2404.11207)]
- Explore the transferability of visual prompting for multimodal LLM 探索多模态大模型visual prompt tuning的可迁移性

Expand Down Expand Up @@ -766,6 +769,12 @@ Here, we list some papers by topic. For list by date, please refer to [papers by

## Deep domain adaptation

- Versatile Teacher: A Class-aware Teacher-student Framework for Cross-domain Adaptation [[arxiv](https://arxiv.org/abs/2405.11754)]
- Teacher-student framework for cross-domain adaptation 教师-学生框架进行跨领域适配

- MICCAI'24 MediCLIP: Adapting CLIP for Few-shot Medical Image Anomaly Detection [[arxiv](https://arxiv.org/abs/2405.11315)]
- Adapting clip for few-shot medical image anomaly detection 对CLIP模型进行适配,以用于少样本图片异常检测

- MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition [[arxiv](https://arxiv.org/abs/2404.15615)]
- Manifold-based domain adaptation for EEG-based emotion recognition 基于流形的DA用于EEG情绪识别

Expand Down
52 changes: 52 additions & 0 deletions doc/awesome_paper_date.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
Here, we list some papers related to transfer learning by date (starting from 2021-07). For papers older than 2021-07, please refer to the [papers by topic](awesome_paper.md), which contains more papers.

- [Awesome papers by date](#awesome-papers-by-date)
- [2024-04](#2024-04)
- [2024-03](#2024-03)
- [2024-02](#2024-02)
- [2024-01](#2024-01)
Expand Down Expand Up @@ -37,6 +38,57 @@ Here, we list some papers related to transfer learning by date (starting from 20
- [2021-08](#2021-08)
- [2021-07](#2021-07)


## 2024-04

- MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition [[arxiv](https://arxiv.org/abs/2404.15615)]
- Manifold-based domain adaptation for EEG-based emotion recognition 基于流形的DA用于EEG情绪识别

- Domain Adaptation for Learned Image Compression with Supervised Adapters [[arxiv](https://arxiv.org/abs/2404.15591)]
- Domain adaptation for learned image compression DA用于图片压缩

- Test-Time Training on Graphs with Large Language Models (LLMs) [[arxiv](https://arxiv.org/abs/2404.13571)]
- Test-time training on graphs with LLMs 使用大语言模型在图上进行测试时训练

- DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series [[arxiv](https://arxiv.org/abs/2404.11269)]
- Domain adaptation for anomaly detection 使用域自适应进行时间序列异常检测

- CVPR'24 Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [[arxiv](https://arxiv.org/abs/2404.11207)]
- Explore the transferability of visual prompting for multimodal LLM 探索多模态大模型visual prompt tuning的可迁移性

- DGMamba: Domain Generalization via Generalized State Space Model [[arXiv](https://arxiv.org/abs/2404.07794)]
- Domain generalization using mamba 用Mamba结构进行DG

- CVPR'24 Unified Language-driven Zero-shot Domain Adaptation [[arxiv](https://arxiv.org/abs/2404.07155)]
- Language-driven zero-shot domain adaptation 语言驱动的零样本 DA

- ICASSP'24 Learning Inference-Time Drift Sensor-Actuator for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447537?casa_token=6xrw2hE7cVEAAAAA:9i_ITqbfyLTzQYjdp4Oi16ziD8uheMMZJHRn4gHmzl9nN_j2c5u8MBxUtYYdzlj1Vn4l8F5OJnrw3BY)]
- Inference-time drift actuator for OOD generalization

- ICASSP'24 SBM: Smoothness-Based Minimization for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446613?casa_token=kO10uC18NMQAAAAA:6WJvMr57dSMyORMAnBgFGXi01aE_AmIAA6CQINztT7pHG2u8RmojDxMdV09UO6O9IfFsVEJDrYl1uiU)]
- Smoothness-based minimization for OOD generalization

- ICASSP'24 G2G: Generalized Learning by Cross-Domain Knowledge Transfer for Federated Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447043?casa_token=ihJ_LaxqnfUAAAAA:8Petax0UdQ9bvJLrRbFrujWcVjDzIckhYLDvIk-rUZxo-S7pa6xgbGBxkLWjs8c8H1jR4E8Rop8e7cc)]
- Federated domain generalization

- ICASSP'24 Single-Source Domain Generalization in Fundus Image Segmentation Via Moderating and Interpolating Input Space Augmentation [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447741?casa_token=t0FGpPfYxeoAAAAA:yyZ1zKhXstoaxNOtP6zKBj1ArLF8JZ7gGQOtR-k6DAHCO9SWTIOwLG5TF71BrcenWvO002MYku-wtQI)]
- Single-source DG in fundus image segmentation

- ICASSP'24 Style Factorization: Explore Diverse Style Variation for Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447540?casa_token=inLqNDEGEjQAAAAA:7jNUOViyS9PIn-BwIV0LJ-5oCzmM7BXpMLfyLosedaxmxZ-_c_2sA615GlCgrlwaspjdVKa4eogm6Z4)]
- Style variation for domain generalization

- ICASSP'24 SPDG-Net: Semantics Preserving Domain Augmentation through Style Interpolation for Multi-Source Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10447210?casa_token=NSBeXUg0AdUAAAAA:4rrMR38UcDN2YRzD9Fvm42gT3dyEX5lO0arFkmVIu3VwQLT9UFLAmU3a5ZOfxtr812_Fic1SCcw9mr0)]
- Domain augmentation for multi-source DG

- ICASSP'24 Domaindiff: Boost out-of-Distribution Generalization with Synthetic Data [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446788?casa_token=Rh3MGM6szOQAAAAA:0GRegU3dIidLVvIYtJb97m2ZDCl0wwKVTmTZH7XTE0fzEBmRuwJHSn_T1U6NgwSYHFPKlWHox_BO4Eg)]
- Using synthetic data for OOD generalization

- ICASSP'24 Multi-Level Augmentation Consistency Learning and Sample Selection for Semi-Supervised Domain Generalization [[IEEE](https://ieeexplore.ieee.org/abstract/document/10446462?casa_token=vfAJ1GINr0AAAAAA:YS4NVt-kR8-sJqhfo6H7d04ZmckxUUpsIYuy2agnB4IpgCnR7xOzyrNv59MZ2lcbVhNvsN6Cl4p_7YI)]
- Multi-level augmentation for semi-supervised domain generalization

- ICASSP'24 MMS: Morphology-Mixup Stylized Data Generation for Single Domain Generalization in Medical Image Segmentation [[IEEE](https://ieeexplore.ieee.org/abstract/document/10448305?casa_token=14-2Vm39RD4AAAAA:Zmzm9KTl3INP2I83T2MLwQXtHUZKwXYfhDOPU9F0Eu9SrznInqGpSBrMYH0ek3eemDKdyL4bBU6EVaY)]
- Morphology-mixup for domain generalization

## 2024-03

- On the Benefits of Over-parameterization for Out-of-Distribution Generalization [[arxiv](http://arxiv.org/abs/2403.17592)]
Expand Down

0 comments on commit aa6ee9f

Please sign in to comment.