Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

attempt at empty stimuli #174

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 33 additions & 14 deletions jaxley/integrate.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,17 +41,36 @@ def integrate(

assert module.initialized, "Module is not initialized, run `.initialize()`."

i_current = module.currents.T if currents is None else currents.T
i_inds = module.current_inds.comp_index.to_numpy()
if module.currents is not None:
# At least one stimulus was inserted.
if currents is not None:
i_current = currents.T
else:
i_current = module.currents.T
i_inds = module.current_inds.comp_index.to_numpy()
else:
# No stimulus was inserted.
i_current = None
i_inds = None
assert (
t_max is not None
), "If no stimulus is inserted that you have to specify the simulation duration at `jx.integrate(..., t_max=)`."

# Deal with recording.
rec_inds = module.recordings.comp_index.to_numpy()

# Shorten or pad stimulus depending on `t_max`.
if t_max is not None:
t_max_steps = int(t_max // delta_t + 1)
if t_max_steps > i_current.shape[0]:
i_current = jnp.zeros((t_max_steps, i_current.shape[1]))
else:
i_current = i_current[:t_max_steps, :]
nsteps_to_return = int(t_max // delta_t + 1)
if i_current is not None:
if nsteps_to_return > i_current.shape[0]:
num_additional_steps = nsteps_to_return - i_current.shape[0]
i_pad = jnp.zeros((num_additional_steps, i_current.shape[1]))
i_current = jnp.concatenate([i_current, i_pad], axis=0)
else:
i_current = i_current[:nsteps_to_return, :]
else:
nsteps_to_return = len(i_current)

# Run `init_conds()` and return every parameter that is needed to solve the ODE.
# This includes conductances, radiuses, lenghts, axial_resistivities, but also
Expand All @@ -70,23 +89,23 @@ def _body_fun(state, i_stim):
)
return state, state["voltages"][rec_inds]

nsteps_to_return = len(i_current)
init_recording = jnp.expand_dims(module.states["voltages"][rec_inds], axis=0)

# If necessary, pad the stimulus with zeros in order to simulate sufficiently long.
# The total simulation length will be `prod(checkpoint_lengths)`. At the end, we
# return only the first `nsteps_to_return` elements (plus the initial state).
if checkpoint_lengths is None:
checkpoint_lengths = [len(i_current)]
length = len(i_current)
checkpoint_lengths = [nsteps_to_return]
length = nsteps_to_return
else:
length = prod(checkpoint_lengths)
assert (
len(i_current) <= length
nsteps_to_return <= length
), "The desired simulation duration is longer than `prod(nested_length)`."
size_difference = length - len(i_current)
dummy_stimulus = jnp.zeros((size_difference, i_current.shape[1]))
i_current = jnp.concatenate([i_current, dummy_stimulus])
size_difference = length - nsteps_to_return
if i_current is not None:
dummy_stimulus = jnp.zeros((size_difference, i_current.shape[1]))
i_current = jnp.concatenate([i_current, dummy_stimulus])

# Join node and edge states.
states = {}
Expand Down
40 changes: 21 additions & 19 deletions jaxley/modules/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -479,8 +479,8 @@ def step(
self,
u,
delta_t,
i_inds,
i_current,
i_inds: Optional[jnp.ndarray],
i_current: Optional[jnp.ndarray],
params: Dict[str, jnp.ndarray],
solver: str = "bwd_euler",
tridiag_solver: str = "stone",
Expand Down Expand Up @@ -596,30 +596,32 @@ def _step_synapse(
@staticmethod
def get_external_input(
voltages: jnp.ndarray,
i_inds: jnp.ndarray,
i_stim: jnp.ndarray,
i_inds: Optional[jnp.ndarray],
i_stim: Optional[jnp.ndarray],
radius: float,
length_single_compartment: float,
):
"""
Return external input to each compartment in uA / cm^2.
"""
zero_vec = jnp.zeros_like(voltages)
# `radius`: um
# `length_single_compartment`: um
# `i_stim`: nA
current = (
i_stim / 2 / pi / radius[i_inds] / length_single_compartment[i_inds]
) # nA / um^2
current *= 100_000 # Convert (nA / um^2) to (uA / cm^2)

dnums = ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,),
)
stim_at_timestep = scatter_add(zero_vec, i_inds[:, None], current, dnums)
return stim_at_timestep
if i_stim is not None:
# `radius`: um
# `length_single_compartment`: um
# `i_stim`: nA
current = (
i_stim / 2 / pi / radius[i_inds] / length_single_compartment[i_inds]
) # nA / um^2
current *= 100_000 # Convert (nA / um^2) to (uA / cm^2)

dnums = ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,),
)
return scatter_add(zero_vec, i_inds[:, None], current, dnums)
else:
return zero_vec


class View:
Expand Down