Skip to content

Latest commit

 

History

History
5143 lines (3158 loc) · 173 KB

SecurityApi.md

File metadata and controls

5143 lines (3158 loc) · 173 KB

intrinio_sdk.SecurityApi

All URIs are relative to https://api-v2.intrinio.com

Method HTTP request Description
get_all_securities GET /securities All Securities
get_security_by_id GET /securities/{identifier} Lookup Security
get_security_data_point_number GET /securities/{identifier}/data_point/{tag}/number Data Point (Number) for Security
get_security_data_point_text GET /securities/{identifier}/data_point/{tag}/text Data Point (Text) for Security
get_security_historical_data GET /securities/{identifier}/historical_data/{tag} Historical Data for Security
get_security_history_by_identifier GET /securities/history-by-identifier/{identifier} Security History By Identifier
get_security_history_by_ticker GET /securities/history-by-ticker/{ticker} Security History By Ticker
get_security_insider_ownership GET /securities/{identifier}/institutional_ownership Institutional Ownership by Security
get_security_interval_movers GET /securities/market_movers Security Intervals Movers
get_security_interval_movers_change GET /securities/market_movers/change Security Intervals Movers By Change
get_security_interval_movers_volume GET /securities/market_movers/volume Security Intervals Movers By Volume
get_security_interval_prices GET /securities/{identifier}/prices/intervals Interval Stock Prices for Security
get_security_intraday_prices GET /securities/{identifier}/prices/intraday Intraday Stock Prices for Security
get_security_latest_dividend_record GET /securities/{identifier}/dividends/latest Latest Dividend Record for Security
get_security_latest_earnings_record GET /securities/{identifier}/earnings/latest Latest Earnings Record for Security
get_security_price_technicals_adi GET /securities/{identifier}/prices/technicals/adi Accumulation/Distribution Index
get_security_price_technicals_adtv GET /securities/{identifier}/prices/technicals/adtv Average Daily Trading Volume
get_security_price_technicals_adx GET /securities/{identifier}/prices/technicals/adx Average Directional Index
get_security_price_technicals_ao GET /securities/{identifier}/prices/technicals/ao Awesome Oscillator
get_security_price_technicals_atr GET /securities/{identifier}/prices/technicals/atr Average True Range
get_security_price_technicals_bb GET /securities/{identifier}/prices/technicals/bb Bollinger Bands
get_security_price_technicals_cci GET /securities/{identifier}/prices/technicals/cci Commodity Channel Index
get_security_price_technicals_cmf GET /securities/{identifier}/prices/technicals/cmf Chaikin Money Flow
get_security_price_technicals_dc GET /securities/{identifier}/prices/technicals/dc Donchian Channel
get_security_price_technicals_dpo GET /securities/{identifier}/prices/technicals/dpo Detrended Price Oscillator
get_security_price_technicals_eom GET /securities/{identifier}/prices/technicals/eom Ease of Movement
get_security_price_technicals_fi GET /securities/{identifier}/prices/technicals/fi Force Index
get_security_price_technicals_ichimoku GET /securities/{identifier}/prices/technicals/ichimoku Ichimoku Kinko Hyo
get_security_price_technicals_kc GET /securities/{identifier}/prices/technicals/kc Keltner Channel
get_security_price_technicals_kst GET /securities/{identifier}/prices/technicals/kst Know Sure Thing
get_security_price_technicals_macd GET /securities/{identifier}/prices/technicals/macd Moving Average Convergence Divergence
get_security_price_technicals_mfi GET /securities/{identifier}/prices/technicals/mfi Money Flow Index
get_security_price_technicals_mi GET /securities/{identifier}/prices/technicals/mi Mass Index
get_security_price_technicals_nvi GET /securities/{identifier}/prices/technicals/nvi Negative Volume Index
get_security_price_technicals_obv GET /securities/{identifier}/prices/technicals/obv On-balance Volume
get_security_price_technicals_obv_mean GET /securities/{identifier}/prices/technicals/obv_mean On-balance Volume Mean
get_security_price_technicals_rsi GET /securities/{identifier}/prices/technicals/rsi Relative Strength Index
get_security_price_technicals_sma GET /securities/{identifier}/prices/technicals/sma Simple Moving Average
get_security_price_technicals_sr GET /securities/{identifier}/prices/technicals/sr Stochastic Oscillator
get_security_price_technicals_trix GET /securities/{identifier}/prices/technicals/trix Triple Exponential Average
get_security_price_technicals_tsi GET /securities/{identifier}/prices/technicals/tsi True Strength Index
get_security_price_technicals_uo GET /securities/{identifier}/prices/technicals/uo Ultimate Oscillator
get_security_price_technicals_vi GET /securities/{identifier}/prices/technicals/vi Vortex Indicator
get_security_price_technicals_vpt GET /securities/{identifier}/prices/technicals/vpt Volume-price Trend
get_security_price_technicals_vwap GET /securities/{identifier}/prices/technicals/vwap Volume Weighted Average Price
get_security_price_technicals_wr GET /securities/{identifier}/prices/technicals/wr Williams %R
get_security_quote GET /securities/{identifier}/quote Quote for a Security
get_security_realtime_price GET /securities/{identifier}/prices/realtime Realtime Stock Price for Security
get_security_replay_file GET /securities/replay Security Replay File
get_security_snapshots GET /securities/snapshots Realtime Stock Prices Snapshot
get_security_stock_price_adjustments GET /securities/{identifier}/prices/adjustments Stock Price Adjustments by Security
get_security_stock_prices GET /securities/{identifier}/prices Stock Prices by Security
get_security_trades GET /securities/trades Security Trades
get_security_trades_by_symbol GET /securities/{identifier}/trades Security Trades By Symbol
get_security_zacks_analyst_ratings GET /securities/{identifier}/zacks/analyst_ratings Zacks Analyst Ratings for Security
get_security_zacks_analyst_ratings_snapshot GET /securities/{identifier}/zacks/analyst_ratings/snapshot Zacks Analyst Ratings Snapshot
get_security_zacks_eps_surprises GET /securities/{identifier}/zacks/eps_surprises Zacks EPS Surprises for Security
get_security_zacks_sales_surprises GET /securities/{identifier}/zacks/sales_surprises Zacks Sales Surprises for Security
screen_securities POST /securities/screen Screen Securities
search_securities GET /securities/search Search Securities

get_all_securities

View Intrinio API Documentation

ApiResponseSecurities get_all_securities(active=active, delisted=delisted, code=code, currency=currency, ticker=ticker, name=name, composite_mic=composite_mic, exchange_mic=exchange_mic, stock_prices_after=stock_prices_after, stock_prices_before=stock_prices_before, cik=cik, figi=figi, composite_figi=composite_figi, share_class_figi=share_class_figi, figi_unique_id=figi_unique_id, include_non_figi=include_non_figi, page_size=page_size, primary_listing=primary_listing, next_page=next_page)

All Securities

Returns a list of all securities available. Delisted securities included.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

active = True
delisted = False
code = ''
currency = ''
ticker = ''
name = ''
composite_mic = ''
exchange_mic = ''
stock_prices_after = ''
stock_prices_before = ''
cik = ''
figi = ''
composite_figi = ''
share_class_figi = ''
figi_unique_id = ''
include_non_figi = False
page_size = 100
primary_listing = ''
next_page = ''

response = intrinio.SecurityApi().get_all_securities(active=active, delisted=delisted, code=code, currency=currency, ticker=ticker, name=name, composite_mic=composite_mic, exchange_mic=exchange_mic, stock_prices_after=stock_prices_after, stock_prices_before=stock_prices_before, cik=cik, figi=figi, composite_figi=composite_figi, share_class_figi=share_class_figi, figi_unique_id=figi_unique_id, include_non_figi=include_non_figi, page_size=page_size, primary_listing=primary_listing, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
active bool When True, return securities that are active. When False, return securities that are not active. A security is considered active if it has traded or has had a corporate action in the past 30 days, and has not been merged into another security (such as due to ticker changes or corporate restructurings). [optional]  
delisted bool When True, return securities that have been delisted from their exchange. Note that there may be a newer security for the same company that has been relisted on a differente exchange. When False, return securities that have not been delisted. [optional]  
code str Return securities classified with the given code (<a href=&quot;https://docs.intrinio.com/documentation/security_codes\" target=&quot;_blank&quot;>reference</a>). [optional]  
currency str Return securities traded in the given 3-digit ISO 4217 currency code (<a href=&quot;https://en.wikipedia.org/wiki/ISO_4217\" target=&quot;_blank&quot;>reference</a>). [optional]  
ticker str Return securities traded with the given ticker. Note that securities across the world (and through time) may trade with the same ticker but represent different companies. Use this in conjuction with other parameters for more specificity. [optional]  
name str Return securities with the given text in their name (not case sensitive). [optional]  
composite_mic str Return securities classified under the composite exchange with the given Market Identification Code (MIC). A composite exchange may or may not be a real exchange. For example, the USCOMP exchange (our only composite exchange to date) is a combination of exchanges with the following MICs: ARCX, XASE, XPOR, FINR, XCIS, XNAS, XNYS, BATS. This composite grouping is done for user convenience. At this time, all US securities are classified under the composite exchange with MIC USCOMP. To query for specific US exchanges, use the exchange_mic parameter below. [optional]  
exchange_mic str The MIC code of the exchange where the security is actually traded. [optional]  
stock_prices_after date Return securities with end-of-day stock prices on or after this date. [optional]  
stock_prices_before date Return securities with end-of-day stock prices on or before this date. [optional]  
cik str Return securities belonging to the company with the given Central Index Key (CIK). [optional]  
figi str Return securities with the given Exchange Level FIGI (<a href=&quot;https://www.openfigi.com/about\" target=&quot;_blank&quot;>reference</a>). [optional]  
composite_figi str Return securities with the given Country Composite FIGI (<a href=&quot;https://www.openfigi.com/about\" target=&quot;_blank&quot;>reference</a>). [optional]  
share_class_figi str Return securities with the given Global Share Class FIGI (<a href=&quot;https://www.openfigi.com/about\" target=&quot;_blank&quot;>reference</a>). [optional]  
figi_unique_id str Return securities with the given FIGI Unique ID (<a href=&quot;https://www.openfigi.com/about\" target=&quot;_blank&quot;>reference</a>). [optional]  
include_non_figi bool When True, include securities that do not have a FIGI. By default, this is False. If this parameter is not specified, only securities with a FIGI are returned. [optional] [default to False]  
page_size int The number of results to return [optional] [default to 100]  
primary_listing bool If True, the Security is the primary issue for the company, otherwise it is a secondary issue on a secondary stock exchange. Returns both if omitted. [optional]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurities

get_security_by_id

View Intrinio API Documentation

Security get_security_by_id(identifier)

Lookup Security

Returns security reference data such as ticker, FIGI, primary exchange, CIK, and a unique security identifier.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'

response = intrinio.SecurityApi().get_security_by_id(identifier)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  

Return type

Security

get_security_data_point_number

View Intrinio API Documentation

float get_security_data_point_number(identifier, tag)

Data Point (Number) for Security

Returns a numeric value for the given tag for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
tag = 'close_price'

response = intrinio.SecurityApi().get_security_data_point_number(identifier, tag)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
tag str An Intrinio data tag ID or code (<a href='https://data.intrinio.com/data-tags&#39;&gt;reference&lt;/a>)  

Return type

float

get_security_data_point_text

View Intrinio API Documentation

str get_security_data_point_text(identifier, tag)

Data Point (Text) for Security

Returns a text value for the given tag for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
tag = 'figi'

response = intrinio.SecurityApi().get_security_data_point_text(identifier, tag)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
tag str An Intrinio data tag ID or code-name  

Return type

str

get_security_historical_data

View Intrinio API Documentation

ApiResponseSecurityHistoricalData get_security_historical_data(identifier, tag, frequency=frequency, type=type, start_date=start_date, end_date=end_date, sort_order=sort_order, page_size=page_size, next_page=next_page)

Historical Data for Security

Returns historical values for the given tag and the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
tag = 'adj_close_price'
frequency = 'daily'
type = ''
start_date = '2018-01-01'
end_date = ''
sort_order = 'desc'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_historical_data(identifier, tag, frequency=frequency, type=type, start_date=start_date, end_date=end_date, sort_order=sort_order, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
tag str An Intrinio data tag ID or code (<a href='https://data.intrinio.com/data-tags&#39;&gt;reference&lt;/a>)  
frequency str Return historical data in the given frequency [optional] [default to daily]  
type str Filter by type, when applicable [optional]  
start_date date Get historical data on or after this date [optional]  
end_date date Get historical date on or before this date [optional]  
sort_order str Sort by date `asc` or `desc` [optional] [default to desc]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityHistoricalData

get_security_history_by_identifier

View Intrinio API Documentation

SecurityHistoryListResult get_security_history_by_identifier(identifier)

Security History By Identifier

Lists the tickers a company has used over time.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = '037833100'

response = intrinio.SecurityApi().get_security_history_by_identifier(identifier)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (FIGI, COMPOSITE FIGI, SHARE CLASS FIGI, ISIN, CUSIP, Intrinio ID)  

Return type

SecurityHistoryListResult

get_security_history_by_ticker

View Intrinio API Documentation

SecurityHistoryListResult get_security_history_by_ticker(ticker)

Security History By Ticker

Lists the tickers a company has used over time.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

ticker = 'AAPL'

response = intrinio.SecurityApi().get_security_history_by_ticker(ticker)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
ticker str A Security ticker symbol  

Return type

SecurityHistoryListResult

get_security_insider_ownership

View Intrinio API Documentation

ApiResponseSecurityInstitutionalOwnership get_security_insider_ownership(identifier, next_page=next_page)

Institutional Ownership by Security

Returns a list of all institutional owners of a given security.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
next_page = ''

response = intrinio.SecurityApi().get_security_insider_ownership(identifier, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityInstitutionalOwnership

get_security_interval_movers

View Intrinio API Documentation

SecurityIntervalsMoversResult get_security_interval_movers(source=source, open_time=open_time)

Security Intervals Movers

Returns a list of intervals for the biggest movers over the last hour interval.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

source = ''
open_time = ''

response = intrinio.SecurityApi().get_security_interval_movers(source=source, open_time=open_time)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
source str Realtime or 15-minute delayed contracts. [optional]  
open_time datetime The inclusive UTC date and time the interval opens at. [optional]  

Return type

SecurityIntervalsMoversResult

get_security_interval_movers_change

View Intrinio API Documentation

SecurityIntervalsMoversResult get_security_interval_movers_change(source=source, open_time=open_time)

Security Intervals Movers By Change

Returns a list of intervals for the biggest movers by change over the last hour interval.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

source = ''
open_time = ''

response = intrinio.SecurityApi().get_security_interval_movers_change(source=source, open_time=open_time)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
source str Realtime or 15-minute delayed contracts. [optional]  
open_time datetime The inclusive UTC date and time the interval opens at. [optional]  

Return type

SecurityIntervalsMoversResult

get_security_interval_movers_volume

View Intrinio API Documentation

SecurityIntervalsMoversResult get_security_interval_movers_volume(source=source, open_time=open_time)

Security Intervals Movers By Volume

Returns a list of intervals for the biggest movers by volume over the last hour interval.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

source = ''
open_time = ''

response = intrinio.SecurityApi().get_security_interval_movers_volume(source=source, open_time=open_time)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
source str Realtime or 15-minute delayed contracts. [optional]  
open_time datetime The inclusive UTC date and time the interval opens at. [optional]  

Return type

SecurityIntervalsMoversResult

get_security_interval_prices

View Intrinio API Documentation

ApiResponseSecurityIntervalPrices get_security_interval_prices(identifier, interval_size, source=source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, page_size=page_size, split_adjusted=split_adjusted, include_quote_only_bars=include_quote_only_bars, next_page=next_page)

Interval Stock Prices for Security

Return open, close, high, low, volume, average price, and change ratio for a particular interval for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
interval_size = '15m'
source = ''
start_date = '2023-01-01'
start_time = '33300'
end_date = '2023-02-01'
end_time = '33300'
timezone = 'UTC'
page_size = 100
split_adjusted = False
include_quote_only_bars = False
next_page = ''

response = intrinio.SecurityApi().get_security_interval_prices(identifier, interval_size, source=source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, page_size=page_size, split_adjusted=split_adjusted, include_quote_only_bars=include_quote_only_bars, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
interval_size str The interval for which to return stock prices [default to 15m]  
source str Return intervals from the specified data source [optional]  
start_date date Return intervals starting at the specified date [optional]  
start_time str Return intervals starting at the specified time on the `start_date` (24-hour in 'hh:mm:ss' format) [optional]  
end_date date Return intervals stopping at the specified date [optional]  
end_time str Return intervals stopping at the specified time on the `end_date` (24-hour in 'hh:mm:ss' format) [optional]  
timezone str Interprets the input times in this time zone, as well as returns times in this timezone. [optional] [default to UTC]  
page_size int The number of results to return [optional] [default to 100]  
split_adjusted bool Whether to return the values adjusted for splits or not. Default is False. [optional] [default to False]  
include_quote_only_bars bool If True, also include bars where no trades occurred but quotes did. [optional] [default to False]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityIntervalPrices

get_security_intraday_prices

View Intrinio API Documentation

ApiResponseSecurityIntradayPrices get_security_intraday_prices(identifier, source=source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, page_size=page_size, next_page=next_page)

Intraday Stock Prices for Security

Deprecated. Return intraday stock prices for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
source = ''
start_date = '2018-01-01'
start_time = ''
end_date = '2019-01-01'
end_time = ''
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_intraday_prices(identifier, source=source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
source str Return intraday prices from the specified data source [optional]  
start_date date Return intraday prices starting at the specified date [optional]  
start_time str Return intraday prices starting at the specified time on the `start_date` (24-hour in 'hh:mm' format, UTC timezone) [optional]  
end_date date Return intraday prices stopping at the specified date [optional]  
end_time str Return intraday prices stopping at the specified time on the `end_date` (24-hour in 'hh:mm' format, UTC timezone) [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityIntradayPrices

get_security_latest_dividend_record

View Intrinio API Documentation

DividendRecord get_security_latest_dividend_record(identifier)

Latest Dividend Record for Security

Returns the latest available dividend information for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'

response = intrinio.SecurityApi().get_security_latest_dividend_record(identifier)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  

Return type

DividendRecord

get_security_latest_earnings_record

View Intrinio API Documentation

EarningsRecord get_security_latest_earnings_record(identifier)

Latest Earnings Record for Security

Returns latest available earnings information for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'

response = intrinio.SecurityApi().get_security_latest_earnings_record(identifier)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  

Return type

EarningsRecord

get_security_price_technicals_adi

View Intrinio API Documentation

ApiResponseSecurityAccumulationDistributionIndex get_security_price_technicals_adi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Accumulation/Distribution Index

The Accumulation / Distribution Indicator is a volume-based technical indicator which uses the relationship between the stock`s price and volume flow to determine the underlying trend of a stock, up, down, or sideways trend of a stock.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_adi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityAccumulationDistributionIndex

get_security_price_technicals_adtv

View Intrinio API Documentation

ApiResponseSecurityAverageDailyTradingVolume get_security_price_technicals_adtv(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Average Daily Trading Volume

Average Daily Trading Volume is the average number of shares traded over a given period, usually between 20 to 30 trading days.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 22
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_adtv(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Average Daily Trading Volume [optional] [default to 22]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityAverageDailyTradingVolume

get_security_price_technicals_adx

View Intrinio API Documentation

ApiResponseSecurityAverageDirectionalIndex get_security_price_technicals_adx(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Average Directional Index

The Average Directional Index indicator is often used to identify decreasing or increasing price momentum for an underlying security, it is composed of a total of three indicators, the current trendline (adx), a positive directional indicator (di_pos), and a negative directional indicator (di_neg).

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_adx(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Average Directional Index [optional] [default to 14]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityAverageDirectionalIndex

get_security_price_technicals_ao

View Intrinio API Documentation

ApiResponseSecurityAwesomeOscillator get_security_price_technicals_ao(identifier, short_period=short_period, long_period=long_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Awesome Oscillator

The Awesome Oscillator (ao) is a momentum indicator and is calculated by taking the difference between the latest 5 period simple moving average and the 34 period simple moving average. Rather than using the closing price like other indicators, the Awesome Oscillator uses the latest period`s midpoint value (period_high - period_low / 2). The Awesome Oscillator is useful in identifying and trading, zero-line crossovers, twin-peaks trading, and bullish/bearish saucers - Awesome Oscillator is often aggregated with additional technical indicators.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
short_period = 5
long_period = 34
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_ao(identifier, short_period=short_period, long_period=long_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
short_period int The number of observations, per period, to calculate short period Simple Moving Average of the Awesome Oscillator [optional] [default to 5]  
long_period int The number of observations, per period, to calculate long period Simple Moving Average of the Awesome Oscillator [optional] [default to 34]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityAwesomeOscillator

get_security_price_technicals_atr

View Intrinio API Documentation

ApiResponseSecurityAverageTrueRange get_security_price_technicals_atr(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Average True Range

The Average True Range (ATR) is a non-directional market volatility indicator often used to generate stop-out or entry indications. An increasing or expanding ATR typically indicates higher volatility, and a decreasing ATR indicates sideways price action and lower volatility.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_atr(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Average True Range [optional] [default to 14]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityAverageTrueRange

get_security_price_technicals_bb

View Intrinio API Documentation

ApiResponseSecurityBollingerBands get_security_price_technicals_bb(identifier, period=period, standard_deviations=standard_deviations, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Bollinger Bands

Bollinger Bands can be a useful technical analysis tool for generating oversold or overbought indicators. Bollinger Bands are composed of three lines, a simple moving average (middle band) and an upper and lower band – the upper and lower bands are typically 2 standard deviations +/- from a 20-day simple moving average, but can be modified. Traders typically consider an underlying security to be overbought as the underlying`s price moves towards the upper band and oversold as the underlying price moves towards the lower band.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
standard_deviations = 2.0
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_bb(identifier, period=period, standard_deviations=standard_deviations, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Bollinger Bands [optional] [default to 20]  
standard_deviations float The number of standard deviations to calculate the upper and lower bands of the Bollinger Bands [optional] [default to 2.0]  
price_key str The Stock Price field to use when calculating Bollinger Bands [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityBollingerBands

get_security_price_technicals_cci

View Intrinio API Documentation

ApiResponseSecurityCommodityChannelIndex get_security_price_technicals_cci(identifier, period=period, constant=constant, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Commodity Channel Index

The Commodity Channel Index (CCI) is a technical indicator used to generate buy and sell signals by indicating periods of strength and weakness in the market. CCI signals that fall below -100 are often perceived as weakness in the underlying price movement and CCI signals that rise above 100 indicate strength behind the underlying price movement.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
constant = 0.015
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_cci(identifier, period=period, constant=constant, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Commodity Channel Index [optional] [default to 20]  
constant float The number of observations, per period, to calculate Commodity Channel Index [optional] [default to 0.015]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityCommodityChannelIndex

get_security_price_technicals_cmf

View Intrinio API Documentation

ApiResponseSecurityChaikinMoneyFlow get_security_price_technicals_cmf(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Chaikin Money Flow

The Chaikin Money Flow (CMF) utilizes exponential moving averages as an indicator to monitor the flow of money and momentum. The CMF indicator oscillates around a midrange 0-line and ranges between 100 and -100.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_cmf(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Chaikin Money Flow [optional] [default to 20]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityChaikinMoneyFlow

get_security_price_technicals_dc

View Intrinio API Documentation

ApiResponseSecurityDonchianChannel get_security_price_technicals_dc(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Donchian Channel

The Donchian Channel consists of an Upper Bound (upper_bound) and Lower Bound (lower_bound) that track the recent highs and lows and is often used to signal entry and exit points for a position. As the price of the underlying symbol increases the Upper Bound raises, if the price becomes range bound the Upper Bound will remain flat and if the price begins to decrease, the Upper Bound will fall (and vice-versa for the Lower Bound).

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_dc(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Donchian Channel [optional] [default to 20]  
price_key str The Stock Price field to use when calculating Donchian Channel [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityDonchianChannel

get_security_price_technicals_dpo

View Intrinio API Documentation

ApiResponseSecurityDetrendedPriceOscillator get_security_price_technicals_dpo(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Detrended Price Oscillator

The Detrended Price Oscillator (DPO) signals the peaks and troughs of the underlying symbol’s price for a set period of time and is often used by traders to estimate future peaks and troughs using this as guidance to enter or exit a position.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_dpo(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Detrended Price Oscillator [optional] [default to 20]  
price_key str The Stock Price field to use when calculating Detrended Price Oscillator [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityDetrendedPriceOscillator

get_security_price_technicals_eom

View Intrinio API Documentation

ApiResponseSecurityEaseOfMovement get_security_price_technicals_eom(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Ease of Movement

The Ease of Movement (EOM) is a volume based oscillator that fluctuates around a midrange 0-line into positive and negative values. Positive values indicate that the underlying symbols price is rising with relative ease and negative value indicates the underlying symbols price is failing with relative ease.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_eom(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Ease of Movement [optional] [default to 20]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityEaseOfMovement

get_security_price_technicals_fi

View Intrinio API Documentation

ApiResponseSecurityForceIndex get_security_price_technicals_fi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Force Index

The Force Index (FI) is an oscillator that takes into account the intensity of an underlying symbol`s price movement and its corresponding volume. It is used to confirm price breakouts and signal underlying trends.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_fi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityForceIndex

get_security_price_technicals_ichimoku

View Intrinio API Documentation

ApiResponseSecurityIchimokuKinkoHyo get_security_price_technicals_ichimoku(identifier, low_period=low_period, medium_period=medium_period, high_period=high_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Ichimoku Kinko Hyo

The Ichimoku Kinko Hyo was designed to be an all-in-one trading indicator that could help traders determine momentum, support, and resistance.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
low_period = 9
medium_period = 26
high_period = 52
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_ichimoku(identifier, low_period=low_period, medium_period=medium_period, high_period=high_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
low_period int The number of observations, per period, to calculate Tenkan Sen (Conversion Line) of Ichimoku Kinko Hyo [optional] [default to 9]  
medium_period int The number of observations, per period, to calculate Kijun Sen (Base Line), Senkou Span A (Leading Span A), and Chikou Span (Lagging Span) of Ichimoku Kinko Hyo [optional] [default to 26]  
high_period int The number of observations, per period, to calculate Senkou Span B (Leading Span B) of Ichimoku Kinko Hyo [optional] [default to 52]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityIchimokuKinkoHyo

get_security_price_technicals_kc

View Intrinio API Documentation

ApiResponseSecurityKeltnerChannel get_security_price_technicals_kc(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Keltner Channel

The Keltner Channel is a volatility based signal, with upper, middle, and lower bands. It is often used at market open, when the largest moves tend to occur. In general, traders tend to buy if the price breaks up above the upper band or sell short if the price drops below the lower band.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 10
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_kc(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Kelter Channel [optional] [default to 10]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityKeltnerChannel

get_security_price_technicals_kst

View Intrinio API Documentation

ApiResponseSecurityKnowSureThing get_security_price_technicals_kst(identifier, roc1=roc1, roc2=roc2, roc3=roc3, roc4=roc4, sma1=sma1, sma2=sma2, sma3=sma3, sma4=sma4, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Know Sure Thing

The Know Sure Thing indicator (KST) is a momentum based oscillator that is calculated by measuring the momentum of four separate price cycles. KST fluctuates above and below a zero line and is used to identify overbought and oversold conditions, and is often used with additional indicators to boost signal strength.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
roc1 = 10
roc2 = 15
roc3 = 20
roc4 = 30
sma1 = 10
sma2 = 10
sma3 = 10
sma4 = 15
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_kst(identifier, roc1=roc1, roc2=roc2, roc3=roc3, roc4=roc4, sma1=sma1, sma2=sma2, sma3=sma3, sma4=sma4, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
roc1 int The number of observations, per period, to calculate the rate-of-change for RCMA1 [optional] [default to 10]  
roc2 int The number of observations, per period, to calculate the rate-of-change for RCMA2 [optional] [default to 15]  
roc3 int The number of observations, per period, to calculate the rate-of-change for RCMA3 [optional] [default to 20]  
roc4 int The number of observations, per period, to calculate the rate-of-change for RCMA4 [optional] [default to 30]  
sma1 int The number of observations, per period, to calculate the Simple Moving Average of the rate-of-change for RCMA1 [optional] [default to 10]  
sma2 int The number of observations, per period, to calculate the Simple Moving Average of the rate-of-change for RCMA2 [optional] [default to 10]  
sma3 int The number of observations, per period, to calculate the Simple Moving Average of the rate-of-change for RCMA3 [optional] [default to 10]  
sma4 int The number of observations, per period, to calculate the Simple Moving Average of the rate-of-change for RCMA4 [optional] [default to 15]  
price_key str The Stock Price field to use when calculating Know Sure Thing [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityKnowSureThing

get_security_price_technicals_macd

View Intrinio API Documentation

ApiResponseSecurityMovingAverageConvergenceDivergence get_security_price_technicals_macd(identifier, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Moving Average Convergence Divergence

Moving average convergence divergence (MACD) is a trend-following momentum oscillator that consists of three indicators: (1) a 12 period short-term exponential moving average (EMA) a 26 period long-term EMA and a 9 period EMA signal line. Traders using MACD often look for signal line crossovers, centerline crossovers, and EMA divergences to indicate the momentum and underlying trend of a security`s price.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
fast_period = 12
slow_period = 26
signal_period = 9
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_macd(identifier, fast_period=fast_period, slow_period=slow_period, signal_period=signal_period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
fast_period int The number of observations, per period, to calculate the fast moving Exponential Moving Average for Moving Average Convergence Divergence [optional] [default to 12]  
slow_period int The number of observations, per period, to calculate the slow moving Exponential Moving Average for Moving Average Convergence Divergence [optional] [default to 26]  
signal_period int The number of observations, per period, to calculate the signal line for Moving Average Convergence Divergence [optional] [default to 9]  
price_key str The Stock Price field to use when calculating Moving Average Convergence Divergence [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityMovingAverageConvergenceDivergence

get_security_price_technicals_mfi

View Intrinio API Documentation

ApiResponseSecurityMoneyFlowIndex get_security_price_technicals_mfi(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Money Flow Index

The Money Flow Index (MFI) is a technical oscillator that incorporates both price and volume, moving between 0 and 100. Traders often consider a MFI above 80 as overbought conditions and below 20 as oversold conditions.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_mfi(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Money Flow Index [optional] [default to 14]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityMoneyFlowIndex

get_security_price_technicals_mi

View Intrinio API Documentation

ApiResponseSecurityMassIndex get_security_price_technicals_mi(identifier, ema_period=ema_period, sum_period=sum_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Mass Index

The mass index (MI) is a technical indicator used by traders to predict trend reversals. A trend reversal signal is said to occur when the 25-day MI reaches 27.0 and then falls below 26.0.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
ema_period = 9
sum_period = 25
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_mi(identifier, ema_period=ema_period, sum_period=sum_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
ema_period int The number of observations, per period, to calculate the single Exponential Moving Average and the Double Exponential Moving Average for Mass Index [optional] [default to 9]  
sum_period int The number of observations, per period, to calculate the sum of the Exponetinal Moving Average Ratios for Mass Index [optional] [default to 25]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityMassIndex

get_security_price_technicals_nvi

View Intrinio API Documentation

ApiResponseSecurityNegativeVolumeIndex get_security_price_technicals_nvi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Negative Volume Index

The negative volume index (NVI) is often referred to as the smart money indicator. It works by the assumption that smart money (institutional money) is at work when volume decreases and vice versa when volume increases. NVI starts at 1000 and increases in regard to the percentage price change when volume decreases over a 255-day EMA period. Traders often use this technical indicator when researching broder markets and indices.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_nvi(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityNegativeVolumeIndex

get_security_price_technicals_obv

View Intrinio API Documentation

ApiResponseSecurityOnBalanceVolume get_security_price_technicals_obv(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

On-balance Volume

On-balance volume (OBV) is a leading momentum indicator that uses the increase/decrease flow in volume to predict upcoming stock price changes. When both OBV and a security`s price are making higher highs, it is presumed the upward trend is likely to continue and vice versa.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_obv(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityOnBalanceVolume

get_security_price_technicals_obv_mean

View Intrinio API Documentation

ApiResponseSecurityOnBalanceVolumeMean get_security_price_technicals_obv_mean(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

On-balance Volume Mean

On-balance volume mean (OBVM) is a leading momentum indicator that uses the increase/decrease flow in volume to predict upcoming stock price changes. The difference between OBV and OBVM is that OBVM takes the mean average of a provided period. When both OBVM and a security`s price are making higher highs, it is presumed the upward trend is likely to continue and vice versa.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 10
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_obv_mean(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate On-balance Volume Mean [optional] [default to 10]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityOnBalanceVolumeMean

get_security_price_technicals_rsi

View Intrinio API Documentation

ApiResponseSecurityRelativeStrengthIndex get_security_price_technicals_rsi(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Relative Strength Index

Relative strength index (RSI) is a momentum oscillator that ranges between 0 and 100. Traders believe that an RSI value over 70 indicates that a security is overbought and an RSI under 30 indicates that a security is oversold.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_rsi(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Relative Strength Index [optional] [default to 14]  
price_key str The Stock Price field to use when calculating Relative Strength Index [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityRelativeStrengthIndex

get_security_price_technicals_sma

View Intrinio API Documentation

ApiResponseSecuritySimpleMovingAverage get_security_price_technicals_sma(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Simple Moving Average

A simple moving average (SMA) adds recent prices for a specified period and divides the total by that same number of periods. SMA is typically used to indicate whether a security is in an uptrend or downtrend and can also be combined with a long-term moving average to improve the signal`s abilities.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 20
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_sma(identifier, period=period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Simple Moving Average [optional] [default to 20]  
price_key str The Stock Price field to use when calculating Simple Moving Average [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecuritySimpleMovingAverage

get_security_price_technicals_sr

View Intrinio API Documentation

ApiResponseSecurityStochasticOscillator get_security_price_technicals_sr(identifier, period=period, signal_period=signal_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Stochastic Oscillator

The Stochastic Oscillator (SO) is a range-bound momentum indicator that ranges from 0 to 100 and follows the velocity of the momentum itself, not the underlying price or volume. When SO is above 80 it indicates that a security is trading at the high end of its period`s high-low range and vice versa if the reading is below 20.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
signal_period = 3
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_sr(identifier, period=period, signal_period=signal_period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate %K of Stochastic Oscillator [optional] [default to 14]  
signal_period int The number of observations, per period, to calculate the %D (the Simple Moving Average of %K) as a signal line for Stochastic Oscillator [optional] [default to 3]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityStochasticOscillator

get_security_price_technicals_trix

View Intrinio API Documentation

ApiResponseSecurityTripleExponentialAverage get_security_price_technicals_trix(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Triple Exponential Average

The Triple Exponential Average (TEA) is a momentum indicator used to identify when a security is oversold and overbought. By exponentially smoothing out the underlying security`s moving average, the TEA filters out insignificant price movements. A positive TEA is often believed to indicate momentum is increasing and a negative TEA indicates that momentum is decreasing.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 15
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_trix(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Exponential Moving Average for Triple Exponential Average [optional] [default to 15]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityTripleExponentialAverage

get_security_price_technicals_tsi

View Intrinio API Documentation

ApiResponseSecurityTrueStrengthIndex get_security_price_technicals_tsi(identifier, low_period=low_period, high_period=high_period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

True Strength Index

The True Strength Index (TSI) is a momentum oscillator used to identify building trends and trend reversals, typically by signalling overbought and oversold conditions. TSI fluctuates between positive and negative values, and traders typically combine its signal with other momentum oscillators to increase its strength. When TSI crosses the signal line into positive territory it is presumed to be an entrance opportunity and vice versa when the TSI crosses into negative territory.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
low_period = 13
high_period = 25
price_key = 'close'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_tsi(identifier, low_period=low_period, high_period=high_period, price_key=price_key, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
low_period int The number of observations, per period, to calculate low period Exponential Moving Average for smoothing in True Strength Index [optional] [default to 13]  
high_period int The number of observations, per period, to calculate high period Exponential Moving Average for smoothing in True Strength Index [optional] [default to 25]  
price_key str The Stock Price field to use when calculating True Strength Index [optional] [default to close]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityTrueStrengthIndex

get_security_price_technicals_uo

View Intrinio API Documentation

ApiResponseSecurityUltimateOscillator get_security_price_technicals_uo(identifier, short_period=short_period, medium_period=medium_period, long_period=long_period, short_weight=short_weight, medium_weight=medium_weight, long_weight=long_weight, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Ultimate Oscillator

The Ultimate Oscillator (UO) is a range bound technical indicator that moves between 0 and 100 and is calculated with 3 timeframes, typically 7, 14, and 28 day periods. When UOs value is above 70 a security is categorized as overbought and when UOs value is below 30 a security is categorized as oversold.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
short_period = 7
medium_period = 14
long_period = 28
short_weight = 4.0
medium_weight = 2.0
long_weight = 1.0
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_uo(identifier, short_period=short_period, medium_period=medium_period, long_period=long_period, short_weight=short_weight, medium_weight=medium_weight, long_weight=long_weight, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
short_period int The number of observations, per period, to calculate the short period for Ultimate Oscillator [optional] [default to 7]  
medium_period int The number of observations, per period, to calculate the medium period for Ultimate Oscillator [optional] [default to 14]  
long_period int The number of observations, per period, to calculate the long period for Ultimate Oscillator [optional] [default to 28]  
short_weight float The weight of short Buying Pressure average for Ultimate Oscillator [optional] [default to 4.0]  
medium_weight float The weight of medium Buying Pressure average for Ultimate Oscillator [optional] [default to 2.0]  
long_weight float The weight of long Buying Pressure average for Ultimate Oscillator [optional] [default to 1.0]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityUltimateOscillator

get_security_price_technicals_vi

View Intrinio API Documentation

ApiResponseSecurityVortexIndicator get_security_price_technicals_vi(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Vortex Indicator

The Vortex Indicator (VI) is composed of an uptrend line (VI+) and a downtrend line (VI-). When VI+ crosses VI- from below it typically indicates an entry into a given security. When VI- crosses VI+ from below it typically triggers an exit and that the current trend is reversing course.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_vi(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to calculate Vortex Indicator [optional] [default to 14]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityVortexIndicator

get_security_price_technicals_vpt

View Intrinio API Documentation

ApiResponseSecurityVolumePriceTrend get_security_price_technicals_vpt(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Volume-price Trend

The volume price trend (VPT) is a technical indicator that uses price & volume to determine whether a trend is established. Typically, when a security is trending upwards, there is more volume on positive days than negative ones, and as a result VPT should be increasing on these days as well. However, if VPT fails to increase past its previous high during an outbreak, this is suggested to indicate the rally is losing strength.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_vpt(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityVolumePriceTrend

get_security_price_technicals_vwap

View Intrinio API Documentation

ApiResponseSecurityVolumeWeightedAveragePrice get_security_price_technicals_vwap(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Volume Weighted Average Price

Volume Weighted Average Price (VWAP) is a lagging technical indicator that is used in combination with a security`s price. When the underlying price rises above its VWAP, it is often interpreted as a bullish signal, and vice versa in the opposite direction.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_vwap(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityVolumeWeightedAveragePrice

get_security_price_technicals_wr

View Intrinio API Documentation

ApiResponseSecurityWilliamsR get_security_price_technicals_wr(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Williams %R

Williams %R is a momentum indicator used to determine overbought and oversold environments for a security and fluctuates between 0 and -100. When Williams %R is above -20 the security is considered to be overbought and when Williams %R is under -80 the security is considered to be oversold.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
period = 14
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_price_technicals_wr(identifier, period=period, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
period int The number of observations, per period, to look-back when calculating Williams %R [optional] [default to 14]  
start_date str Return technical indicator values on or after the date [optional]  
end_date str Return technical indicator values on or before the date [optional]  
page_size float The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityWilliamsR

get_security_quote

View Intrinio API Documentation

ApiResponseSecurityQuote get_security_quote(identifier, active_only=active_only, source=source, next_page=next_page)

Quote for a Security

Returns many popular metrics for a security from multiple products conveniently in one API. Realtime stock price data requires at least one realtime product subscription (IEX, NASDAQ Basic, and/or Delayed SIP). If you are subscribed to multiple realtime stock price products, the api will return the most recent realtime stock price. Previous close price and percent change fields require both an EoD US Stock Price subscription and a realtime stock price subscription. Market_cap, price_to_earnings, and dividendyield data fields require a fundamentals subscription.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
active_only = False
source = 'delayed_sip'
next_page = ''

response = intrinio.SecurityApi().get_security_quote(identifier, active_only=active_only, source=source, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
active_only bool Whether to return only realtime prices from today. [optional] [default to False]  
source str Return the realtime price from the specified source instead of the most recent. [optional]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityQuote

get_security_realtime_price

View Intrinio API Documentation

RealtimeStockPrice get_security_realtime_price(identifier, source=source)

Realtime Stock Price for Security

Return the realtime stock price for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
source = ['iex,delayed_sip']

response = intrinio.SecurityApi().get_security_realtime_price(identifier, source=source)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
source list[str] Return the realtime price from the specified comma-delimited data sources. If no source is specified, the best source available is used. [optional]  

Return type

RealtimeStockPrice

get_security_replay_file

View Intrinio API Documentation

SecurityReplayFileResult get_security_replay_file(subsource, date)

Security Replay File

Returns a url where the requested replay file may be downloaded from.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

subsource = ''
date = ''

response = intrinio.SecurityApi().get_security_replay_file(subsource, date)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
subsource str The specific source of the data being requested.  
date date The date for the data being requested.  

Return type

SecurityReplayFileResult

get_security_snapshots

View Intrinio API Documentation

SecuritySnapshotsResult get_security_snapshots(at_datetime=at_datetime)

Realtime Stock Prices Snapshot

Returns all security snapshots for the queried interval with links to download.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

at_datetime = ''

response = intrinio.SecurityApi().get_security_snapshots(at_datetime=at_datetime)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
at_datetime datetime The UTC date and time (with url-encoded spaces) the snapshot will cover. [optional]  

Return type

SecuritySnapshotsResult

get_security_stock_price_adjustments

View Intrinio API Documentation

ApiResponseSecurityStockPriceAdjustments get_security_stock_price_adjustments(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)

Stock Price Adjustments by Security

Returns stock price adjustments for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_stock_price_adjustments(identifier, start_date=start_date, end_date=end_date, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date date Return price adjustments on or after the date [optional]  
end_date date Return price adjustments on or before the date [optional]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityStockPriceAdjustments

get_security_stock_prices

View Intrinio API Documentation

ApiResponseSecurityStockPrices get_security_stock_prices(identifier, start_date=start_date, end_date=end_date, frequency=frequency, page_size=page_size, next_page=next_page)

Stock Prices by Security

Return end-of-day stock prices for the Security with the given identifier

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
start_date = '2018-01-01'
end_date = '2019-01-01'
frequency = 'daily'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_stock_prices(identifier, start_date=start_date, end_date=end_date, frequency=frequency, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date date Return prices on or after the date [optional]  
end_date date Return prices on or before the date [optional]  
frequency str Return stock prices in the given frequency [optional] [default to daily]  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityStockPrices

get_security_trades

View Intrinio API Documentation

SecurityTradesResult get_security_trades(source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, page_size=page_size, darkpool_only=darkpool_only, min_size=min_size, next_page=next_page)

Security Trades

Returns all trades between start time and end time, up to seven days ago for the specified source.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

source = ''
start_date = ''
start_time = ''
end_date = ''
end_time = ''
timezone = 'UTC'
page_size = 100
darkpool_only = False
min_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_trades(source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, page_size=page_size, darkpool_only=darkpool_only, min_size=min_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
source str The specific source of the data being requested.  
start_date date The start date for the data being requested. [optional]  
start_time str The start time for the data being requested. [optional]  
end_date date The end date for the data being requested. [optional]  
end_time str The end time for the data being requested. [optional]  
timezone str The timezone the start and end date/times use. [optional] [default to UTC]  
page_size int The maximum number of results to return per page. [optional] [default to 100]  
darkpool_only bool Set to True to show only darkpool trades [optional] [default to False]  
min_size int Trades must be larger or equal to this size. [optional]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

SecurityTradesResult

get_security_trades_by_symbol

View Intrinio API Documentation

SecurityTradesResult get_security_trades_by_symbol(identifier, source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, darkpool_only=darkpool_only, page_size=page_size, min_size=min_size, next_page=next_page)

Security Trades By Symbol

Returns all trades for a symbol between start time and end time, up to seven days ago for the specified source.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
source = ''
start_date = ''
start_time = ''
end_date = ''
end_time = ''
timezone = 'UTC'
darkpool_only = False
page_size = 100
min_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_trades_by_symbol(identifier, source, start_date=start_date, start_time=start_time, end_date=end_date, end_time=end_time, timezone=timezone, darkpool_only=darkpool_only, page_size=page_size, min_size=min_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str The ticker symbol for which trades are being requested.  
source str The specific source of the data being requested. Specifying delayed sip will result in the system automatically determining which delayed sip source (cta_delayed, cta_b_delayed, utp_delayed, otc_delayed) to use.  
start_date date The start date for the data being requested. [optional]  
start_time str The start time for the data being requested. [optional]  
end_date date The end date for the data being requested. [optional]  
end_time str The end time for the data being requested. [optional]  
timezone str The timezone the start and end date/times use. [optional] [default to UTC]  
darkpool_only bool Set to True to show only darkpool trades [optional] [default to False]  
page_size int The maximum number of results to return per page. [optional] [default to 100]  
min_size int Trades must be larger or equal to this size. [optional]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

SecurityTradesResult

get_security_zacks_analyst_ratings

View Intrinio API Documentation

ApiResponseSecurityZacksAnalystRatings get_security_zacks_analyst_ratings(identifier, start_date=start_date, end_date=end_date, mean_greater=mean_greater, mean_less=mean_less, strong_buys_greater=strong_buys_greater, strong_buys_less=strong_buys_less, buys_greater=buys_greater, buys_less=buys_less, holds_greater=holds_greater, holds_less=holds_less, sells_greater=sells_greater, sells_less=sells_less, strong_sells_greater=strong_sells_greater, strong_sells_less=strong_sells_less, total_greater=total_greater, total_less=total_less, page_size=page_size)

Zacks Analyst Ratings for Security

This database offers consensus analyst recommendations for over 5,000 US and Canadian listed companies.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
page_size = 100

response = intrinio.SecurityApi().get_security_zacks_analyst_ratings(identifier, page_size=page_size)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
start_date str Limit ratings to those on or after this date [optional]  
end_date str Limit ratings to those on or before this date [optional]  
mean_greater float Return only records with a mean (average) higher than this value [optional]  
mean_less float Return only records with a mean (average) lower than this value [optional]  
strong_buys_greater int Return only records with more than this many Strong Buy recommendations [optional]  
strong_buys_less int Return only records with fewer than this many Strong Buy recommendations [optional]  
buys_greater int Return only records with more than this many Buy recommendations [optional]  
buys_less int Return only records with fewer than this many Buy recommendations [optional]  
holds_greater int Return only records with more than this many Hold recommendations [optional]  
holds_less int Return only records with fewer than this many Hold recommendations [optional]  
sells_greater int Return only records with more than this many Sell recommendations [optional]  
sells_less int Return only records with fewer than this many Sell recommendations [optional]  
strong_sells_greater int Return only records with more than this many Strong Sell recommendations [optional]  
strong_sells_less int Return only records with fewer than this many Strong Sell recommendations [optional]  
total_greater int Return only records with more than this many recommendations, regardless of type [optional]  
total_less int Return only records with fewer than this many recommendations, regardless of type [optional]  
page_size int The number of results to return [optional] [default to 100]  

Return type

ApiResponseSecurityZacksAnalystRatings

get_security_zacks_analyst_ratings_snapshot

View Intrinio API Documentation

ApiResponseSecurityZacksAnalystRatingsSnapshot get_security_zacks_analyst_ratings_snapshot(identifier, date=date)

Zacks Analyst Ratings Snapshot

This database offers current and historical consensus analyst recommendation snapshots for over 5,000 US and Canadian listed companies.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
date = ''

response = intrinio.SecurityApi().get_security_zacks_analyst_ratings_snapshot(identifier, date=date)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
date str Lookup a historical snapshot on the given date [optional]  

Return type

ApiResponseSecurityZacksAnalystRatingsSnapshot

get_security_zacks_eps_surprises

View Intrinio API Documentation

ApiResponseSecurityZacksEPSSurprises get_security_zacks_eps_surprises(identifier, page_size=page_size, next_page=next_page)

Zacks EPS Surprises for Security

Returns historical estimated and actual earnings, guidance, and announcement dates for a specified symbol.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_zacks_eps_surprises(identifier, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityZacksEPSSurprises

get_security_zacks_sales_surprises

View Intrinio API Documentation

ApiResponseSecurityZacksSalesSurprises get_security_zacks_sales_surprises(identifier, page_size=page_size, next_page=next_page)

Zacks Sales Surprises for Security

This database returns historical estimated and actual sales, guidance, and announcement dates for a specified US or Canadian company.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

identifier = 'AAPL'
page_size = 100
next_page = ''

response = intrinio.SecurityApi().get_security_zacks_sales_surprises(identifier, page_size=page_size, next_page=next_page)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
identifier str A Security identifier (Ticker, FIGI, ISIN, CUSIP, Intrinio ID)  
page_size int The number of results to return [optional] [default to 100]  
next_page str Gets the next page of data from a previous API call [optional]  

Return type

ApiResponseSecurityZacksSalesSurprises

screen_securities

View Intrinio API Documentation

list[SecurityScreenResult] screen_securities(logic=logic, order_column=order_column, order_direction=order_direction, primary_only=primary_only, page_size=page_size)

Screen Securities

Screen Securities using complex logic. Use POST only. See <a href="https://docs.intrinio.com/documentation/screener_v2\" target="_blank">screener documentation for details on how to construct conditions.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

clauses = [
  {
    "field": "marketcap",
    "operator": "gt",
    "value": "10000000"
  },
  {
    "field": "beta",
    "operator": "lt",
    "value": "5"
  }
]

logic = intrinio.SecurityScreenGroup(operator="AND", clauses=clauses)
order_column = 'marketcap'
order_direction = 'asc'
primary_only = False
page_size = 100

response = intrinio.SecurityApi().screen_securities(logic=logic, order_column=order_column, order_direction=order_direction, primary_only=primary_only, page_size=page_size)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
logic SecurityScreenGroup The logic to screen with, consisting of operators, clauses, and nested groups. </br> See <a href=&quot;https://docs.intrinio.com/documentation/screener_v2\" target=&quot;_blank&quot;>screener documentation</a> for details on how to construct conditions. [optional]  
order_column str Results returned sorted by this column [optional]  
order_direction str Sort order to use with the order_column [optional] [default to asc]  
primary_only bool Return only primary securities [optional] [default to False]  
page_size int The number of results to return. Maximum for this endpoint is 50000. [optional] [default to 100]  

Return type

list[SecurityScreenResult]

search_securities

View Intrinio API Documentation

ApiResponseSecuritiesSearch search_securities(query, page_size=page_size)

Search Securities

Search the securities database and return a list of securities matching the text query parameter passed through. Query parameter searches across the security ticker and name.

Example

from __future__ import print_function
import time
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException

intrinio.ApiClient().set_api_key('YOUR_API_KEY')
intrinio.ApiClient().allow_retries(True)

query = 'Apple'
page_size = 100

response = intrinio.SecurityApi().search_securities(query, page_size=page_size)
print(response)
    
# Note: For a Pandas DataFrame, import Pandas and use pd.DataFrame(response.property_name_dict) 

Parameters

Name Type Description Notes
query str  
page_size int The number of results to return [optional] [default to 100]  

Return type

ApiResponseSecuritiesSearch