-
Notifications
You must be signed in to change notification settings - Fork 2
Feature Extraction using FDLP
License
iiscleap/FeatureExtractionUsingFDLP
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
%***************************************************************** % Sriram Ganapathy % Center of Language and Speech Processing % Johns Hopkins University % [email protected] %***************************************************************** % 11-Jan-2012 % See the file COPYING for the licence associated with this software. ****************************************************************** Ref: S. Ganapathy, S. Thomas and H. Hermansky, "Temporal envelope compensation for robust phoneme recognition using modulation spectrum ", Journal of Acoustical Society of America, Dec. 2010. S. Thomas, S. Ganapathy and H. Hermansky, "Recognition Of Reverberant Speech Using Frequency Domain Linear Prediction", IEEE Signal Processing Letters, Dec 2008. S. Ganapathy, S. Thomas and H. Hermansky, "Feature Extraction Using 2-D Autoregressive Models For Speaker Recognition", IEEE Speaker Odyssey, Jun. 2012. ****************************************************************** DESCRIPTION The FOLDER CONTAINS MATLAB FUNCTIONS FOR FEATURE EXTRACTION USING FREQUENCY DOMAIN LINEAR PREDICTION (FDLP). THE VARIOUS EXTRACTION SCHEMES ARE 1. FDLP BASED SPECTRAL FEATURE EXTRACTION (FDLP-S) - SHORT-TERM FEATURES SIMILAR TO MFCC 2. FDLP BASED MODULATION FEATURE EXTRACTION (FDLP-M) - LONG-TERM MODULATION FEATURES 3. FDLP + PLP FOR 2-D AUTO-REGRESSIVE MODELLING (FDLP_PLP2) - SHORT-TERM FEATURES SIMILAR TO PLP FOR USING ALL THE FUNCTIONALITIES IN FDLP-M, PLEASE DOWNLOAD AND COMPILE ADAPTIVE COMPRESSION LOOP MEX IMPLEMENTATION FROM http://medi.uni-oldenburg.de/download/demo/adaption-loops/adapt_loop.zip THE ADAPT_M MEX FILE MUST BE PLACED IN THE CURRENT DIRECTORY. ******************************************************************* USAGE IN MATLAB: FEAT = FDLP_FEAT(SAMPLES,CONFIG_FILE) THE DESCRIPTION OF THE CONFIG FILE ENTRIES IS PROVIDED AT THE BOTTOM OF THIS README. ******************************************************************* EXAMPLE IN MATLAB fid = fopen ('fcjf0_sx37.raw', 'rb','l'); [x,cnt] = fread(fid,inf,'int16'); fclose (fid); feats = fdlp_feat(x,'matlab.config'); ******************************************************************* ACKNOWLEDGEMENTS SOME OF THE FUNCTIONS IN THIS IMPLEMENTATION MODIFY THE ORIGINAL IMPLMENTATION OF PLP FEATURES FROM DAN ELLIS. http://labrosa.ee.columbia.edu/matlab/rastamat/ THE INITIAL IMPLEMENTATION OF THE FDLP TECHNIQUE CAME FROM MARIOS ATHINEOS http://www.ee.columbia.edu/~marios/ ****************************************************************** COPYRIGHT Read the file COPYING for copyrights. ******************************************************************* Decription of the configuration parameters % Signal Parameters SAMPLE_RATE % Sampling Rate FDLP_LEN % FDLP frame length in seconds (1 second) FLAG_FULL_SIG % Using the entire signal in one frame length (useful for short speech files of 2-3s) % Type of Feature FEAT_TYPE % Type of features (fdlps=1/fdlpm=2/fdlp_plp2=3) AXIS % Frequency Axis (bark=1/mel=2/linear=3) MEL_WARP % Applies only for converting linear to mel-scale DCT_LOW % Begin of Frequency Axis in DCT domain DCT_HIGH % End of Frequency Axis in DCT domain SKIP_BANDS % Skip the initial bands in feature computation % Feature configuration FLAG_GAIN_NORM % Gain normalization MODEL_ORDER % Model order per sub-band per second FLAG_LP_TYPE % Type of linear prediction (autocorr=1/ls=2) FLAG_WIENER % Apply Wiener filtering in feature % Modulation feature configuration TEMP_CEPS % Number of modulation components per band FLAG_ADAPT % Including static and adaptive compression % Requires mex file adapt_m % Spectral feature parameters SPEC_CEPS % Number of cepstral components FLAG_C0 % Flag set to 1 for using C1-C13 SPEC_FR_LEN % Frame length for spectral frame (ms) SPEC_FR_SHIFT % Frame shift for spectral fram (ms) FLAG_DELTA % Apply Delta and Acceleration *******************************************************
About
Feature Extraction using FDLP
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published